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AFIT/GCE/ENG/92D-02

Abstract

Saber is a two-sided, air and land war game that simulates decisions made by com-

manders at the theater-level. It is being developed by the Air Force Institute of Technology

for the Air Force Wargaming center at Maxwell AFB, Alabama. Saber models conven-

tional, chemical, and nuclear warfare between aggregated air and land forces. It also

protrays the effects of logistics, satellites, weather, terrain, and intelligence which add to

the realism of the Saber war game.

The Sabcr war game has three main components, the preprocessor, which is respon-

sible for scenario development and pre-game acitvities, the simulation, the guts of the war

game that provides execution of missions and conflict resolution, and the postprocessor,

which provides detailed reports and an animated graphical output of troop movement.

This thesis documents the object-oriented analysis, design and implementation of

Saber simulation. During the analysis and design phase, a five step process was used.

These steps included identifying the objects along with their attributes and operations and

encapsulating them within Ada Packages. During implementation, sound object-oriented

principles were used to ensure a system that could be easily understood, modified, and

enhanced.

ix



OBJECT-ORIENTED ANALYSIS, DESIGN,

AND IMPLEMENTATION OF THE

SABER WARGAME

L Introduction

1.1 Overview

Saber is a new computerized war game being designed and implemented by several

students and faculty members at the iir Force Institute of Technology(AFIT). The effort of

this thesis was to continue this design and development process, bringing Saber a step closer

to its final production. Ultimately, Saber will be delivered to the Air Force Wargaming

Center at Maxwell AFB, Alabama, where it will be utilized as an educational tool in the

art of Army and Air Force Doctrine.

Saber is a two-sided, air and land war game that simulates decisions made of comman-

ders at the theater-level. The major components simulated include "stochastic attrition

between aircraft, ground forces and theater air defenses, formation of aircraft packages,

logistics, intelligence, and nuclear and chemical waxfare."(8:1)

The Saber war game is composed of three main parts: 1) the pre-processor, 2) the

post-processor, and 3) the simulation itself. Specifically, this thesis concentrates on the

object-oriented analysis, design and implementation of the simulation.

1.2 Background

The history of Saber can be traced back to another computerized war game, the

Theater War Exercise (TWX) or its PC based version, Agile. TWX has been used by the

Air Force Wargaming Center since 1977, and it is the role of Saber to replace this outdated

model. Although TWX and Agile have served their purpose, they lack several key aspects

of modeling todays "real world" combat. One shortfall of these models are their inability
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of the air battle to realistically affect the land battle. The air battle only resulted in the

"slowing down of land units". Considering the recent events of Desert Storm, it is evident

that air power plays a much larger role in battle than just a "slowing down of land units".

The first concept of a new land battle was initiated in 1990 by Caption Marlin Ness.

The Ada programming language was used. The land battle was modeled using a two

dimensional hexagonal grid structure on which land units performed missions such as move,

attack, defend, withdraw, and support(12). Each hex is divided into six pie pieces where

terrain type features are modeled (vegetation, water, mountains, etc.). Obstacles, such

as broken bridges and mine fields are associated with a hex-side and must be negotiated

before land units can advance from one hex to the next.

Following Ness, Captain William Mann developed a conceptual model integrating

Air Force doctrine into a redefined version of Ness' land battle. This new airland model

is now known as Saber. Mann's air battle included adding features such as bases, depots,

and the formation of aircraft packages which conduct area, support, and strike nissions

against enemy targets. The formulas and algorithms used to perform stochastic attrition

between forces were also part of Mann's thes;is effort. The basic air structure is modeled

by placing six layers of "mega hexes"(15) on top of the ground hexes where each "mega

hex" encloses a single ground hex and its six surrounding hexes. The first "mega hex"

layer represents treetop level; the sixth layer represents space where satellites are modeled.

The overall structure of Saber looks very sii,=ilar to the typical combat model pre-

sented in (8), and is shown in Figure 1.

Since Ness and Mann's work, foui additional theses have been devoted to the overall

structure of the Saber war game. Three were devoted to further model development, and

the fourth to an assessment of the model's fundamental concepts. The three developmental

theses were performed by Captains Andrew Horton(7), Gary Klabunde(12), and Chris

Sherry(22) and the assessment by Captain David Scagliola(21).

Horton's efforts concentrated on I he preprocessor resulting in the design and im-

plementation of a relational database using the Oracle database management system to

2
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Figure 1. Typical Combat Model (8)

handle the enormous amount of data required to run the simulation. He also layed out the

framework for a graphical user interface in which players could enter game missions.

Klabunde's main effort was in the development of the postprocessor. The X Window

System along with the Open Software Foundation's (OSF) (12) Motif widget set was used

to "provide an animated, graphical postprocessor and report generator for the Saber war

game that provided the participants with force status information necessary to plan and

execute a theater level air war"(12).

Sherry developed an object-oriented design of the air war using Mann's conceptual

model. During these theses efforts, Scagliola conducted an overall assessment of the model.

A complete verification and validation was not possible as Saber still had several portions

that were not implemented and, at the time, lacked a working simulation.
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1.3 The Problem

The Air Force Wargaming Center needs a new and improved computer war game

to replace existing outdated models being used as training tools by students of Air War

College. Saber is intended to fulfill this need. The underlying concepts of the Saber War

game have been formulated, however, several portions remain to be implemented. The

two major areas of implementation needed include the integration of the land and air

battle into a single simulation and the completion of the user interface. The purpose of

this thesis is to design an object-oriented model of the airland battle, implementing the

design incorporating any new functionality layed out in any of the previous theses, plus

any new functionality added by the current Saber working group. Captain Donald R.

Moore conducted his thesis effort in the concurrently worked on the completion of the user

interface(16).

1.4 Objectives

As mentioned, the effort of this thesis was to develop the overall airland battle

simulation. To produce this result, the following objectives were set forth:

1. Conduct an object-oriented design of the airland battle to determine the objects, and

their relationships with one another, that are required for a complete working model

of the simulation.

2. Research the data structures currently used in the completed portions of the bat-

tle and replace them where appropriate, with data structures giving rise to faster

simulation run times and reduced memory requirements.

3. Develop a history file that will be used by Klabunde's graphical user interface. This

history file will act as the source in which animation of the last simulation's activities

can be presented to the game players.

4. Using the object-oriented design, complete coding of the simulation using object-

oriented programming techniques.
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1.5 Assumptions

The following assumptions were made during the completion of this thesis effort:

1. The Ada programming language would be used for all software coding, and must be

compatible with the Verdix Ada version. It is preferable that the simulation will be

compatible with any version of Ada.

2. The simulation must be executed on Sun Sparc Station II or compatible workstation.

3. The simulation must have a maximum run time of less than four hours between input

and analysis(21).

4. The conceptual models of both Ness and Mann adequately represent air and land

warfare to the level desired for the educational requirement.

5. The algorithms and equations developed for combat processes are correct.

1.6 Methodology

The approach to the development and implementation of the simulation followed

these basic steps:

1. Gained an understanding of the basic elements and functionality requirements of the

Saber simulation. This included a comprehensive review of the conceptual land and

air models designed by Ness and Mann, as well as modifications made during later

theses efforts.

2. Completed a literature review of object-oriented design and object-oriented program-

ming. A proper object-oriented design and implementation of that design supplies a

number of advantages described in Chapter II.

3. Decided on a methodology in which to implement the object-oriented design. This

included selecting data structures in which tradeoffs between run time and memory

requirements were considered.

4. Developed a mini scenario in which test cases could be run. The mini scenario was

instrumental in speeding up the testing process and allowed for quicker scenario

modifications.
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5. Created a history file by determining what data requirements were necessary for the

graphical user animation postprocessor.

1.7 Materials and Equipment

All development efforts of thesis were conducted on a Sun Sparc II workstation at

AFIT. Version 6 of Verdix Ada was the primary development language used, however, the

software was also tested with Meridian Ada. Developed software is executable on a Sun

Spaxc Station II or compatible workstation.

1.8 Thesis Overview

Chapter II is a literature review of object-oriented design methods and the use of

these methods in developing simulations with the Ada programming language. Chapter

III describes the requirements analysis and design. Chapter IV discusses the modifications

and enhancements that were added to Saber. Chapter V presents the implementation

details of the design, and finally Chapter VI contains a summary and conclusion as well

as recommendations for future work.
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IL Literature Review

2.1 Introduction

In order to conduct an object-oriented design of the Saber war game, it was necessary

to understand the basic concepts behind the object-oriented methodology. The purpose

of this chapter is to review some of the literature on object-oriented modeling and design.

Basic object-oriented modeling and design definitions and concepts are discussed. There

were several authors that presented varying object-oriented techniques, however, only two

are presented. The first is the object modeling technique (OMT) of Rumbaugh, et al.(20)

and the secend is Booch's five steps to object-oriented analysis and design(2). The advan-

tages of object oriented modeling and design are then discussed, and finally, the ability of

the Ada programming language to support object-oriented design is discussed.

2.2 Object-Oriented Modeling and Design

Object-oriented modeling and design is a new way of thinking about problems using

models to represent "real world" concepts. The basic entity of an object-oriented system

is the object which encapsulates both data structure and behavior. This differs from the

traditional view of software systems which axe composed of a collections of data that

represent some information and a set of procedures that manipulate the data. Object-

orientation, as it is integrated into the fundamental components of software development,

is to the 1990's what structured programming was to the 1970's and 1980's: a new and

important paradigm for improving software construction, maintenance, and use (26).

2.3 Definitions and Concepts

There are a number of key definitions and concepts that must be understood before

conducting any type of object-oriented project. Many authors define these key definitions

and concepts differently, as well as use different names that represent the same concept.

For example, the basic concept of an object is termed "object" by some authors and

"instance" by others. For purposes of consistency, the five definitions and concepts as
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described by Korson and McGregor (13) are presented. These concepts, described in the

following sections, are objects, classes, inheritance, polymorphism, and dynamic binding.

2.3.1 Objects. An object is a "concept, abstraction, or thing with crisp boundaries

and meaning" (20:21) that makes sense in an application context. Booch defines an object

as "something you can do something to. An object has state, behavior, and identity; the

structure and behavior of similar objects are defined in their common class; the terms

instance and object are interchangeable"(3:77). An object's state encompasses all of the

properties of the object plus the current values of each of these properties(20:78). The

"behavior of an object is how it acts and reacts, in terms of its state changes and message

passing"(3:80). Message passing is the basis for communication among objects and it is

these messages that initiate object operations(25:204). Objects can be either concrete or

conceptual. An example of a concrete object is a file in a file system. A scheduling policy

in a multiprocessing operating system is an example of a conceptual object. Objects serve

two purposes: "They promote understanding of the real world and provide a practical

basis for computer implementation"(20:21).

"Objects are the basic run-time entities in an object-oriented system. Objects take

up space in memory and have an associated address"(13:42). Every object is associated

with a set of procedures and functions that define operations on that object.

2.3.2 Classes. A class "describes a group of objects with similar properties (at-

tributes), common behavior (operations), common relationships to other objects, and com-

mon semantics"(20:22). A single object is simply an instance of a class. "From the point

of view of a strongly typed language, a class is a construct for implementing a user-defined

type"(13:42).

Ideally, "a class is an implementation of an abstract data type (ADT)"(13:42). This

means that the implementation details of the class are private to the class(13:42). "Ab-

straction gives object-orientation its power and ability to generalize from a few specific

cases to a host of similar cases"(20:22). The programming language Ada has the package

construct for creating ADTs. The package construct of Ada differs from a class in that a

8



"package encapsulates the type but is not the type itself. It results in a weaker connection

between state and behavior as well as the syntactic burden of an additional parameter to

most of the package's procedures"(13:42).

2.3.3 Inheritance. Inheritance is "a relationship among classes, wherein one class

shares the structure or behavior defined in one (single inheritance) or more (multiple

inheritance) other classes. Inheritance defines a 'kind of' hierarchy among classes in which

a subclass inherits from one or more superclasses; a subclass typically augments or redefines

the existing structure and behavior of its superclasses"(3:514). With single inheritance a

subclass may inherit data and methods from a single class as well as adding or subtracting

behavior on its own. Multiple inheritance refers to the ability of a subclass to acquire

data and methods from more than one class. Multiple inheritance is useful in building

composite behavior from more than one branch of a class hierarchy(26:34). "Inheritance

is the most promising concept we have to help us realize the goal of constructing software

systems from reusable parts rather than hand coding every system from scratch"(13:43).

2.3.4 Polymorphism. Polymorphism is "a concept in type theory, according to

which a name (such as a variable declaration) may denote objects of many different classes

that are related by some common superclass; thus, any object denoted by this name is able

to respond to some common set of operations in different ways"(3:517). In simpler terms,

it is the ability of the objects to take on more than one form. "In an object-oriented lan-

guage, a polymorphic reference is one that can, over time, refer to instances of more than

one class"(13:45). Because of this ability, a polymorphic reference has both a dynamic and

static type associated with it. The dynamic type of a polymorphic reference may change

from instant to instant during the program execution and the static type is determined

from the declaration of the entity in the program text(13:45).

2.3.5 Dynamic Binding. Dynamic binding "denotes the association of a name (such

as a variable declaration) with a class; dynamic binding is a binding in which the name/class

association is not made until the object designated by the name is created (at execution

time)"(3:513). "Dynamic binding means the code associated with a given procedure call

9



is not known until the moment of the call at runtime"(13:46). "Dynamic binding is as-

sociated with polymorphism and inheritance in that a procedure call associated with a

polymorphism reference may depend on the dynamic type of that reference"(13:46).

2.4 Object-Oriented Methodology

According to (5), experience of the industrial use of object-oriented technology indi-

cates that a disciplined software process is the essential factor determining success. Key

components of a software process are systematic analysis and design techniques and re-

cently there have been a number of object-oriented analysis and design techniques devel-

oped (4, 9, 20, 23). All of these these techniques are very similar since they use entity-

relationship models, state machines and data flow diagrams to build different views of the

problem domain, or software in the case of design.

As just mentioned, the key components of the object-oriented methodology are

object-oriented analysis and design, each of which are discussed further in the following

sections.

2.4.1 Object-Oriented Analysis. Object-Oriented Analysis (OOA), the first step of

the object-oriented methodology, is primarily concerned with gaining a precise understand-

ing of the application, then modeling the application in the domain of its intended use. The

analysis phase is an iterative process in which the customer and developer work together to

produce models that represent the "real world". In order for these models to be successful,

they must state what needs to be accomplished, without specifying any restriction as to

how it is to be accomplished, and without diving into any implementation details. Other

requirements of these models are for them to be:

"* Unambiguous - A model should have a single discernible meaning. Ambiguity leads

to confusion and can cause the "wrong" problem being analyzed and solved.

"• Abstract - A model should not be cluttered with unnecessary details that can prej-

udice the design and implementation phases.
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* Consistent - It should be possible to check if different models of the same system

conflict. Inconsistency causes the same problems as ambiguity.

Rumbaugh, et al. uses a method called the Object Modeling Technique (OMT)

in which the analysis phase is broken down into six steps. The following sections are a

summary of the material in (20) except where indicated.

2.4-.1.1 Step 1 - Statement of Requirements. Before anything can be devel-

oped the requirements of the system must be stated, usually in the form of a problem

statement. For the Department of Defense projects, the problem statement may come

from an A-Spec, B-Spec, Statement of Work, Request for Proposal, System Specification,

and a number of other sources(24:62). The problem statement should scope the problem

by stating what is needed, describing the context in which the application will be used,

listing any assumptions and stating any specific performance needs. The problem state-

ment should not attempt to give a general approach to solving the problem, such as specific

algorithms or data structures to use, architecture, or any optimizations. These should be

left to the design and implementation phases.

2.4.1.2 Step 2 - Construction of Object Models. Once the requirements are

understood, the next step is to construct an object model also known as a entity-relationship

model. The purpose of the object model is to show the static data structure of the real-

world system and to partition the system into workable pieces. It describes real-world

object classes and their relationships with each other. These relationships are shown by

drawing arcs between the object classes. The cardinality of the relationship can also be

specified. The OMT technique uses an empty circle to indicate a zero or one relation-

ship while a filled in circle denotes a zero or many relationship. Methods for constructing

the object model vary slightly from author to author, but most have the basic steps as

described by Rumbaugh, et al. The steps are:

a Identify objects and classes. During this first step all the relevant object classes

are extracted from the application domain. Relevant object classes include physical

entities such as aircraft apd tanks, as well as concepts, such as trajectories. The

11



object classes can usually be found by "extracting all nouns, pronouns, and noun

clauses"(9) from the requirements statement.

"* Prepare a data dictionary. Words often do not have precise meanings, therefore a

data dictionary should be prepared describing all of the modeled entities to include

object classes, associations, attributes, and operations.

"* Identify associations (including aggregations) between objects. An association exists

when two or more classes depend on each other, or when one class references another.

The associations can usually be extracted from the stative verbs or verb phrases of

the problem statement.

"* Identity attributes of objects and links. The next step is to identify the attributes of

an object. Attributes are properties of an object and can be found in the problem

statement as nouns followed by possessive phrases, such as "maximum speed of the

aircraft". Many times, attributes are not fully described in the problem statement.

In this case, the developers must rely on their knowledge of the application domain

to extract the attributes.

"* Organize and simplify object classes using inheritance. The next step is to organize

classes to share a common structure. This is done by using inheritance. "Inheritance

can be added in two directions: by generalizing common aspects of existing classes

into a superclass (bottom up) or by refining existing classes into specialized subclasses

(top down)"(20:163).

"• Iterate and refine the model. Rarely will the object model be correct after a single

pass. Because the complete software development process is an iterative process,

changes are inevitable, requiring modifications to the object model.

"• Group classes into modules. The last step for constructing an object model is to

group classes into sheets and modules. Classes are grouped into sheets for purposes

of drawing, printing and viewing, while they are grouped into modules that capture

some logical subset of the entire model.

2.4•.1.3 Step 3 - Construction of Dynamic Models. The purpose of the dy-

namic model is to show the time-dependent behavior of the system and the objects in it.
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The dynamic analysis starts by determining what events will take place in the system.

These include any stimuli or responses. Once the events have been determined, a state

diagram is developed showing the events and the objects they are associated with. The

dynamic model is insignificant for systems that are completely static, such as a database.

The major steps in developing the dynamic model are (20):

"* Prepare scenarios of typical interaction. These prepared scenarios are typical dialogs

between the user and the system and are used to get a feel for the system behavior.

This allows the designer to gain an understanding of the major interactions, external

display formats, and information exchanges.

"* Identify events between objects. Once the scenarios are prepared they are examined to

identify all of the external events. These events include all signals, inputs, decisions,

interrupts, transitions, and actions to or from users or external devices.

"* Prepare an event trace for each scenario. From the scenarios generated an event trace

is constructed which is an ordered list of events between different objects assigned to

columns in a table. By looking down a single column of the table, you can determine

all of the events that affect a particular object. The events of the event trace are

then used to build the state diagram.

"* Build a state diagram. The state diagram shows all of the classes that have nontrivial

dynamic behavior, along with the events that it receives and sends. Each event in

the event trace is modeled by placing an arc between its affected classes. During the

interval between any two of these events the system is considered to be in a particular

state.

Match events between objects to verify consistency. Once the state diagrams for each

class are complete they axe check for completeness and consistency. The set of state

diagrams for object classes with important dynamic behavior constitute the dynamic

model for an application.

2.4.1.4 Step 4 - Construction of Functional Models. The purpose of func-

tional models axe to "show how values are computed, without regard for sequencing, de-

cisions, or object structure" and to "show which values depend on which other values and
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the functions that relate them".(20) In constructing a functional model the following steps

are followed:

"* Identify input and output values. To build the functional model a listing of all the

input and output of the system is required. These input and output values are any

type of event between the outside world and the system.

"* Build data flow diagrams showing functional dependencies. A data flow diagram

(DFD) is "a graphical technique that depicts information flow and the transforms

that are applied as data move from input to output(18)." The DFD is constructed

by showing how each output value is derived from input values.

"* Describe functions. Once the DFD has been constructed a description of each of the

functions provides a clear understanding of the relationships between input and out-

put values. These descriptions can be in the form of natural languages, mathematical

equations, pseudo code, decision tables, or some other appropriate form.

"* Identify constraints. The next step is to identify any constraints between objects.

Constraints are functional dependencies between objects that are not related by an

input-output dependency. Constraints can be on two objects at the same time,

between instances of the same object at different times (an invariant), or between

instances of different objects at different times.

"* Specify optimization criteria. During this step, values are maximized, minimized, or

otherwise optimized. If conflicts arise between values to be optimized, it needs to be

indicated how the conflict will be resolved.

2.4.1.5 Step 5 - Add Operations. Rumbaugh states that the OMT method

to object-oriented analysis is much different than traditional programming-based object-

oriented methodologies since it places much less emphasis on the defining of operations.

This allows for a number of useful operations to be added. These operations can range

from a query about an attribute or association of an object in the object model, to events

in the dynamic model, to functions in the functional model.
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2.4.1.6 Step 6 - Iteration of the Analysis Process. It is almost impossible to do

a complete analysis the first time through these steps, therefore it is necessary to reiterate

through the previous analysis steps before moving on the the design phase. The iteration

process includes looking at the overall analysis model and identifying any inconsistencies

and imbalances within and across the models. If possible, these are corrected to obtain

a cleaner and more coherent design. Rumbaugh states that there is not a definite line

between the analysis and design phases, and not to over iterate the analysis process.

2.4.2 Object-Oriented Design. The object-oriented design (OOD) phase is the sec-

ond part of the object-oriented methodology. During the analysis phase, emphasis was

placed on "what" needed to be accomplished. The design phase places its emphasis on

"how" it is to be accomplished by making decisions about how the problem will be solved.

The basic goal of the OOD phase is to translate the analysis models into an object-oriented

software representation. Many authors describe different steps to construct the object-

oriented software. Rumbaugh, et al. further divides this phase into a system design step

and a object design step. Pressman(18), on the other hand, divides this phase into a pre-

liminary design step and a detailed design step. Regardless of the author, their ultimate

intentions are to obtain a sound object-oriented design. Pressman presents six guidelines

for establishing this sound design:

1. A design should exhibit a hierarchical organization that makes intelligent use of

control among components of software.

2. A design should be modular: that is, the software should be logically partitioned into

components that perform specific functions and sub functions.

3. A design should contain distinct and separable representation of data and procedure.

4. A design should lead to modules (e.g. subroutines or procedures) that exhibit inde-

pendent functional characteristics.

5. A design should lead to interfaces that reduce the complexity of connections betweer

modules and with the external environment.
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6. A design hold be derived using a repeatable method that is driven by information

obtained during software requirements analysis.

Pressman also goes on to say that these characteristics are not achieved by chance,

but are a result of the applicatien of fundamental design principles, systematic methodol-

ogy, and thorough review.

2.4.3 Booch's Object-Oriented Design Process. As a comparison to Rumbaugh's

object modeling technique, the five steps of Booch's object-oriented design process are

described below. This process is widely used in the Ada community.

2.4.3.1 Identify the Objects and Their Attributes. "The first step, identify

the objects and their attributes, involves the recognition of the major actors, agents, and

servers in the problem space, plus their role in our model of reality(2)." Typically, the

objects identified are derived from the nouns, pronouns, and noun phrases used to describe

the problem space.

Many of the objects identified may be similar. In this case, a class of objects is estab-

lished which represent instances of the object. After all the objects have been identified,

several iterations of analysis must be accomplished. Freitas et al.(6) list four additional

iteration steps:

"* Once the original list of candidate objects and classes have been identified, the entries

that refer to values, methods and other "non-objects" must be eliminated This

includes objects identified that describe the same thing but use different terms.

"* The goal of the next iteration is to perform a detailed a-alysis of each object and

object class in order to form a clear and precise picture of the objects that will

compose the solution of the problem. Each entry is analyzed to detect if it represents

a helpful object or class, and, if so, if it needs to be grouped with other objects or

classes or divided into separate objects or classes.
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"* During this iteration, the results of the previous steps are used and each remaining

object is grouped into its own class. Each object must belong to a class, even if that

class is anonymous.

"* During this last iteration, a semantic analysis of the requirements related to each

object and class is performed. This is completed to verify their completeness and

correctness.

Once the final list of objects has been identified, the attributes of each object must be

determined. The attributes are what define the object or class characterizing its time and

space behavior(i). The attributes "are given by the qualifiers of the objects and classes

within the informal strategy and by the additional information found in the requirements

analysis document(9)."

2.4.3.2 Identify the Operation Suffered By and Required of Each Object. Dur-

ing this step, the semantics of each object and class are established by determining oper-

ations that may be performed on or by the object or class(2). The operations usually :an

be extracted from the verbs, verb phrases, and predicates of the requirements document.

These verbs, verb phrases, and predicates are then associated with their respective objects

and classes. "It is also at this time that we establish the dynamic behavior of each object

by identifying the constraints on time and space that must be observed."(2:2-9)

2.4.3.3 Establish the Visibility of Each Object in Relation to Other Objects.

During this step, the visibility of each object in relation to other objects is established.

These are the static dependencies among objects and classes, in other words, what objects

"see" and are "seen" by a given object(2).

The OOD Handbook for Ada Software written by EVB Software Engineering, Inc.(9)

breaks this step into four substeps, listed below:

* This first substep is to decide on how each of the operation will be implemented. In

Ada, the program units will be a subprogram, a package, a task, or a generic.
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* The second substep is to formally describe the interfaces among the objects, types,

and operations. These descriptions can either be textual or graphic.

"* The third substep is to create any additional objects, types, and operations which

will help implement the strategy. These arn items that were not identified as part of

the informal strategy, but are required to implement the strategy.

" The fourth and last substep is to produce graphical annotations of the formal strat-

egy. The graphical annotations are used to 1) define the interface among the program

units, 2) indicate the order of dependent compilation for the program units, and 3)

indicate which information (objects, types, and operations), if any, will be exported

by each of the program units. The graphical annotations do not show the under-

lying implementations of the operations or indicate how an object or type is to be

implemented.

2.4-.3.4 Establish the Interface of Each Object. During this step, the interface

of each object is established. In Ada, this is accomplished by constructing the specifications

of each object. The interface forms the boundary between the outside view and the inside

view of an object.(1)

2.4-.3.5 Implement Each Object. The fifth and final step, implement each ob-

ject, "involves choosing a suitable representation for each object or class of objects and

implementing the interface from the previous step(1)." This could result in a further de-

composition, composition, or both. Sometimes an object will be composed of several

subordinate objects(l). In Ada, the object will be implemented using one of the program

units as mentioned above; a subprogram, a package, a task, or a generic.

2.5 Advantages of Object-Oriented Techniques

There are many documented advantages to using object-oriented techniques. The

following sections describe several of the advantages.

2.5.1 Modularity. "Modularity is the term used to qualify a system of objects where

each object has a minimum of interaction with the other objects(l1)." This allows a pro-
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gram to be "intellectually manageable". Also, as modification need to be made to an

object of a modular system there are little, if at all, repercussions on the other objects of

the system.

2.5.2 Resuability. Reusability is enhanced using object-oriented techniques because

the concepts encapsulated in a class are provided in the method interfaces. The user needs

to only understand only the behavior of the class objects as specified by the method

interfaces, without concern about their implementation. From the user's point of of view,

the method implementations are contained in a "black box" hidden from view. This allows

for libraries of modules to be built. Software developers can then "check out" modules

that provide the desired functionality without coding from scratch.

2.5.3 Maintainability. Maintainability is enhanced by using object-oriented tech-

niques because changes in the implementation of a data structure or algorithm (e.g., code

within the class implementation) can be localized to the region of code that implements

the class or part of the class. There will be no ripple effects due to the changes because

the class interface will be preserved. This interface is what forms the basis for "using" the

class in terms of the actions that can be performed on the class objects from outside the

scope of the class.

2.5.4 Reliability. The reliability of a software system is also enhanced because of

the high-level integration that is built into the initial design. The major pieces that make

up the system are configured from the beginning and fitted together. This allows for high-

level integration testing to be performed before many of the low-level details have been

implemented. This contributes to improved reliability.

Korson and McGregor describe other ways in which object-oriented techniques pro-

vide support for a good design. These include information hiding, weak coupling, strong

cohesion, abstraction, and extensibility. Each of these adds to either the reusability, main-

tainability, or reliability of the overall object-oriented system.
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2.6 Object-Oriented Programming Languages

"Object oriented programming languages are languages in which objects can be im-

plemented, together with facilities for ensuring that the implementation of objects can

be hidden from the programmer, and facilities that enable a high degree of reusability

to take place."(10:48) Obviously, the most natural implementation target for an object-

oriented design is an object-oriented language. According to (18:158), "in theory, the

creation of objects and the construction of object-oriented software can be accomplished

using any conventional programming language. But in practice, support for object-oriented

approaches should be built directly into the programming language that will be used to im-

plement an object-oriented design." This is true since object-oriented language constructs

are similar to the object-oriented design constructs. Basically, "an object-oriented lan-

guage supports objects (combining data and operations), polymorphism at run-time, and

inheritance." (20:341)

2.7 Object-Oriented Programming with Ada

Can Ada be considered an object-oriented language? Dr. R. W. Shore(24) states

that "while it is safe to say that Ada supports oriented-object design, it is perhaps more

difficult to label Ada as an object-oriented language." Ada supports both data abstraction

and discrete objects, however, Rumbaugh, et al. believe that since it does not support

inheritance it cannot be considered truly object-oriented. Rumbaugh et al. go on to say

that the main obstacle to the straightforward mapping between the object-oriented design

and coding is a result of Ada's strong typing system and rigid procedure pointers.

Although Ada may not be considered a truly object-oriented programming language,

there are many demonstrated examples of Ada that exhibit object-oriented programming

features (24).

One of the major themes of object-oriented programming is the idea of encapsulation

of data rc resentation and method implementation. Strong enforcement of encapsulation

is provided by Ada with the use of the package construct. The package construct is

composed of a package specfication which provides the external view of the package, and
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a package body which encapsulates the implementation details of the package. A common

style of Ada programming is to implement each object class as a package, however, it is

not uncommon to implement several object classes within a single package. The attributes

that define the object class as well as the operations that can be performed on the object

class should only be accessible through the package specification.

Rumbaugh et al. point out two ways to implement inheritance in a language that

does not directly support inheritance, such as Ada. The first is to avoid using inheritance

at all. Many applications do not require inheritance features, therefore, the object classes

can be implemented as simple records. The second way to implement inheritance is to

flatten the class hierarachy. During design, inheritance is used as normal, however, during

implementation, each concrete object class is expanded as an independent data structure.

Each inherited operation must also be reimplemented for each of the concrete object classes.

Flattening the hierarchy increases the amount of duplicated code, but the use of Ada's

variant record and generic package constructs can reduce the duplication.

2.8 Object-Oriented Design and Simulation

There are many advantages to using object-oriented design and programming tech-

niques when developing simulations. Roberts and Hiem (19) point out three immediate

benefits of using the object-oriented approach.

1. The first major benefit of object-oriented systems is the design philosophy they bring

to a problem. Rathar than relying on the processes or procedures that drive the sys-

tem, they focus on the objects that compose the system. By encapsulating the

characteristics and methods within the objects, the objects can be viewed as fun-

damental components of the system. This provides a natural decomposition of a

system.

2. The second major benefit is that simulations become extensible. Existing models can

form the basis for new ones and existing concepts can be enhanced to handle new

systems. Inheritance permits new objects to be defined from existing ones by just
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describing the differences. Old models now become reusable because their methods

and objects continue to be useful.

3. The third benefit, in side-by-side comparisons of object-oriented programming with

procedural programming, there has been a substantial reduction in the size of the

resulting code. This reduction in code size means that a single person can man-

age more complexity. In the simulation of large and complex systems, this benefit

can mean that larger and more realistic models are possible without an increase in

manpower.

Roberts and Hiem a)so point out three long term benefits of using the object-oriented

approach in developing simulations.

1. The first of these is that objects in most simulations tend to be physical and real.

Generally they can by represented pictorially. Therefore, object-oriented simulation

models often have a natural pictorial representation and are easily animated. The

user can often directly translate his simulation model into an animated simulation

without additional conceptual changes.

2. The second long term benefit is that because the objects contain their own function-

ality, intelligence can be built directly into this functionality using the machinery of

artficial intelligence and expert systems.

3. And the third is that objects provide a natural basis for concurrency. The idea would

be that each object could be assigned to its own processor and work away until it

needed some form of coordination.

2.9 Summary

This chapter discussed object-oriented design. Several of the key concepts relating

to object-oriented technology were defined. An object represents something in the real

world and has a state, behavior and identity. Objects that are similar are then placed

into classes. The concepts of inheritance, polymorphism and dynamic binding were also

presented.
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There are several object-oriented analysis and design processes that exist today, two

of which were presented in this chapter. Booch's approach which consisted of five steps, and

Rumbaugh's object modeling technique which consisted of a total of six steps. Booch's

steps included the construction of graphical annotations with Rumbaugh including the

construction of object, dynamic, and functional models. Although the terminology was

different the underlying principles are the same. There were many similarities between the

two processes.

The Ada programming language was also discussed. Ada does exhibit many of the

object-oriented features required of an object-oriented language, however, since it does not

support inheritance, it cannot be considered a true object-oriented language.

Finally, the short and long term benefits of using object-oriented design techniques in

the development of simulations were discussed. Short term benefits included the reduction

in code size and the ease with which the simulation could be extended. Long term benifits

included the addition intelligence directly into each object and the natural basis in which

concurrency can be exercised.

The next chapter describes the analysis and design phase that was accomplished as

part of this thesis.
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III. Object-Oriented Analysis and Design

3.1 Introduction

This chapter presents the results of the object-oriented analysis and design of the

Saber Simulation. Booch's steps to object oriented analysis and Rumbaugh's Object Mod-

eling Technique (OMT) for creating an object model were the foundations on which this

analysis and design were based. The results presented in this chapter represent an iterative

analysis and design process that was conducted throughout this thesis effort.

3.2 Requirements Analysis

The purpose of the analysis phase was to scope the requirements of the Saber simu-

lation. Because of the magnitude of the simulation, a precise single problem statement was

not developed nor does it exist. Instead, the requirements of Saber are located throughout

a number of previous theses efforts. To accomplish this initial analysis step, a complete

review of the following documents were conducted:

"* Captain Ness' thesis,

"* Captain Mann's thesis,

"* Captain Horton's thesis,

"* Captain Klabunde's thesis,

"* Captain Sherry's thesis, and

"* Captain Scagliolia's thesis.

As a result of this review, an understanding of the Saber simulation's assumptions,

performance needs, and functionalities were gained. Emphasis was placed on identifying

and understanding the major components of the simulation, each of which are briefly

described in the following sections. Although the analysis phase should only be concerned

with what needs to be done, there are a few details discussed. This is due to the fact

that Saber has been an ongoing thesis effort and several of its data structures have been
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determined. For example, the playing field is composed of an interlocking structure of

hexagons.

3.2.1 Saber's Playing Field. The playing field of the Saber simulation is modeled,

similar to many other common war games, as an interlocking structure of hexagons (hexes)

as shown in Figure 2. The hexagons are situated with the vertices (points) oriented in

an east-west direction (modification from a previous north-south orientation (17)) and

represents a distance of twenty-five kilometers (from fiat to fiat). The hexes are interlocked

through a common hex side identification (neighbor id). For example, in Figure 2 the

northeast hex side of hex 03 02 would have the same identification as the southwest hex

side of hex 04 02. The minimum and maximum hex numbers are considered a "no man's

zone" and is shown in Figure 2 with slashed lines. This "no man's zone" serves two

purposes. The first is too alleviate some of the complexity of the movement algorithms.

The second is to represent bases that are not able to be physically located in the current

playing field, however are able to affect battle outcome with aircraft and supply support.

Sherry used an example of a Korean scenario where a United States base located in the

Phillipines would be able to support warfare in the Korean area, but is not able to be

physically located in its proper location. This base is represented by locating it somewhere

in the "no man's zone". An important aspect of the "no man's zone" is that bases located

there are unable to be targeted.

Three dimensional play is modeled by placing six layers of air hexes on top of the

ground hexes, resulting in a total of seven hex layers. Each air hex or "mega hex", a term

often used by waxgamers, encloses a single ground hex and its six surrounding ground hexes.

Figure 3 depicts how these air hexes are oriented in relation to the ground hexes and can be

seen outlined in the bolder faced lines. Each layer of air hexes represents a different altitude

with the first layer representing treetop level and the sixth layer representing space. Exact

level and altitude correspondances can be found in (8).

An identifier "HX", and a ZZ-XX-YY coordinate system is used to label each air

and ground hex. The ZZ-coordinate representing the level, the XX-coordinate representing

longitude, and the YY-coordinate representing latitude. Although most coordinate systems
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Figure 2. Saber Ground Grid Structure

use a~n X-Y-Z coordinate system, it was decided that it would be easier for the user if the

altitude, or level was the first number (22). By constraining the number of hexes to

two digits, the maximum grid size would be a 100 X 100 (numbering starts from 0) grid

structure. With the hex sizes representing 25 kilometers across, the maximum playing field

would be 250,000 km2 . For theater level warfare, this is sufficient (22).

Linkage between the ground and air hexes are realized through the ZZ-XX-YY num-

bering scheme. Figure 4 is an example of a single air hex. In this example, ground hex

HX010201 is the center hex for its surrounding six ground hexes (each ground hex has

a center hex attribute). The air hex HX040201, shown in bold lettering, is then linked

through this ground center hex through the XX and YY coordinates. In this example, the

air hexes HX020201 through HX070201 are also linked to ground hex HtX010201. Visibility

within the air and ground hexes is such that anything in a air hex can "see" any of the

ground hexes that it encloses and vice versa. Any ground hex can "see" up into the air

hexes that enclose it.
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Figure 3. Saber Air Grid Structure

3.2.2 Ground Hex Terrain and Assets. The ground hex is the basic entity which

portrays terrain features and in which a number of assets can reside. Each ground hex is

divided into six pie pieces as shown in Figure 5 by the the dotted lines. Each pie piece has

one of six pie trafficabilities associated with it, which range from excellent to very poor

and can represent terrain features such as mountains, hills, deserts, oceans, water, or flat

green land.

There are many entities that can be located within a particular ground hex. Land

units can be located at the center or border of a ground hex. Obstacles, which include

man made objects, impassable objects, mine fields, and bridges are attached to one of the

six hex sides, such as the bridge in Figure 5. There is a difficulty value associated with

each obstacle which is used to determine the amount of time and resources it will take for

a land unit to cross the hex side into the adjacent hex. Obstacles are modified, created

and destroyed by engineer, fire support, and air force units. For example, a bridge could

be damaged by enemy aircraft and then repaired by a civil engineering unit. Rivers an~d

streams are also associated with a side of a ground hex.
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Figure 4. Center Hex

Road pieces, railroad pieces, and pipeline pieces are also modeled on a ground hex

and run radially outward from the center of a hex to the center of a hex side. Each

road, railroad, and pipeline piece represents a single segment of a larger road, railroad, or

pipeline. Figure 5 shows how four road pieces are connected to form a larger road. The

addition of road pieces increases the trafficability of the pie piece allowing for increased

movement rates. The railroads and pipelines are logistic lines and allow for the flow of

supplies and equipment form point to point. Road, railroad, and pipeline pieces are also

targetable by enemy forces, and if destroyed, will cause movement rates to decrease, and

equipment and supplies to stop flowing until an engineering unit is able to rebuild or repair

the damages.

3.2.3 Land Units. The main moving and fighting entity of the land battle is the

land unit, which at any given time are either located at a ground hex center or ground hex

border. As a land unit receives orders (land unit missions) to move to a new location, the

time to traverse the hex is calculated (grid time). After the unit has served its grid time, it
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Figure 5. Example Modeled Assets of Hex

then is able to move to the border and must overcome any obstacles as described above. If

there are any obstacles at the border, the land unit can either overcome the obstacle at its

own rate, or it can receive engineering support to greatly reduce the transition time. After

the obstacles have been overcome, the unit is then able to transition into the next hex and

a new travel time is calculated. Land units are allowed to continue on their movement

missions as long as they do not encounter any attacking enemy land units. If opposing

land units do come in contact, and if one of them has a current attack mission, they must

engage in combat until one or both units reach a breakpoint (point at which a land unit will

withdraw from combat) and withdraws, a unit is completely destroyed, or the attacking

unit receives an override mission to terminate the attack. The strengths (combat power)

of the fighting forces determines what attrition rates each of the units will suffer.

3.2.4 Airbase8 and Depots. Airbases and depots are the main supporters of aircraft

for the simulation. Airbases maintain aircraft which are used to support sortie missions

(or aircraft packages discussed in the following section) against enemy targets. Airbases
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must also possess the necessary supplies such as fuel and munitions to fly the aircraft. As

aircraft perform sorties the airbase resources are used. The depots main purpose is for

bulk storage of resources and to provide these resources to the airbases. Supply movement

from the depots to the airbases is discussed in section 3.2.6.

3.2.5 Aircraft Packages. The main moving and fighting entity of the air battle is

the aircraft package. Aircraft packages are composed of primary, escort or combat air

patrol, suppression of enemy air defense (SEAD), electronic combat, and refueling aircraft.

To form the aircraft package the airbases are polled in order to determine whether there

are enough aircraft to support the mission. Before each polled base can dedicate requested

aircraft, several checks are accomplished. This includes making sure the base has enough

munitions, fuel and a long enough runway for the aircraft to take off. If the type of

munitions are not specified by the user, the aircraft will automatically be loaded with its

preferred load. The preferred load is determined by several factors to include the current

weather, hardness of the target, type of mission, and the type of warhead to be used.

Other checks include making sure the base is able to operate in the current weather and

if the target is within range of the aircraft. Only if all these checks are satisfied is the

base allowed to dedicate the aircraft to the aircraft package. If a minimum user defined

percentage of aircraft are available, the aircraft package is formed, otherwise the package

is delayed. Of the formed aircraft packages, the area missions are executed first with the

strike missions following. The aircraft package missions start at a designated rendezvous

location and proceed to their target location. The aircraft packages are allowed to move

towards its target location until it encounters an enemy air defense unit or enemy airci aft.

If an aircraft package encounters enemy air defense units, the SEAD aircraft try to take

out as many as the surface-to-air missile (SAM) sites as possible. If an aircraft package

encounters other enemy aircraft the escort or combat air patrol aircraft will engage. In

either case, stochastic attrition will determine loses, and as long as the aircraft package

does not drop below its chicken factor (point at which the aircraft package will abort), it

will continue towards its target. Once at its target location, SEAD aircraft will take out

the enemy air defenses, the primary aircraft will deliver their ordinance and the aircraft

package will return to its originating rendezvous hex. Aircraft are then returned to their
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orignating air bases where they must go through either a turn around time (time it takes for

the aircraft to be refueled and loaded with new weapons) or a maintenance cycle (time to

repair battle damages or conduct routine preventive maintenence) before they fly another

sortie.

3.2.6 Supply Trains. Supply trains are the mechanisms by which supplies are moved

during the simulation (the other major method of logistics movement is accomplished

through the Saber user interface). Supply trains have the same features of a land unit plus

additional features which allow it to move supplies from location to location. Supply trains

originate from either a land unit depot or a base depot where they are loaded with the sup-

plies needed to complete their missions. The supply trains then traverse the hexes moving

towards their mission locations. Along the route they are succeptable to being targeted

by either enemy aircraft or other enemy land units. Once the supply trains reach their

mission location, they disburse their supplies and move on to their next mission location.

If the supply train has finished its last mission it will do one of two things. If it is a regular

supply train (ST), it will wait for further orders. If it is a predetermined supply train

(PST), it will return to its originating depot for resupply and repeat the supply missions.

3.2.7 Intelligence. Bases, depots, ground hexes and land units all have an intelli-

gence index associated with them. The intelligence index's purpose is to determine the

amount of knowledge that an opponent knows. Over time, each entities intel index is re-

duced. This simulates less knowledge about the entity by the enemy. As land units come in

contact, their intelligence indexes are raised, and as a result the enemy knows more about

the land unit. Intelligence indexes are also increased by Army military intelligence units,

reconnaissance missions and anti-satellite (ASAT), navigation (GPS) and photographic

reconnaissance satellites.

3.2.8 Weather. The Saber playing field is divided into weather zones where each

weather zone will have good, fair or poor weather. The actual weather of each zone

is determined by a good weather percent, fair weather percent, and the outcome of a

random number draw. The weather can play several factors in the simulation, which can
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Table 1. Saber Simulation Object Classes
Air Force Mission Air Hex Air-to-Air Missile
Air-to-Ground Missile Airbase Airbase Component
Aircraft Aircraft Package Chemical Weapon
Day Ground Component Ground Hex
Hardness Hex Side Land Unit
Land Unit Mission Nuclear Weapon Obstacle
Period Pipeline Pipeline Pieces
Preferred Conventional Load Preferred Biological Load Preferred Nuclear Load
Radar Railroad Railroad Pieces
River Road Road Pieces
Runway Satellite Supply Train
Supply Train Mission Surface-to-Surface Missile Surface-to-Air Missile
Target Weather River

include land unit movement rates being decreased, bases becoming partially or completely

inoperable and aircraft packages success rate being reduced.

3.2.9 Clock. The clock mechanism, composed of a day, period and weather period,

is what gives the simulation its sense of time. There are twelve periods to a day making

each period two hours. This two hour period is the minimum time step that the Saber

simulation can perform and was selected because it was determined to be the appropriate

amount of time needed for an aircraft package to complete its mission. There are six

weather periods each day making each weather period four hours long.

3.3 Object-Oriented Design

The following sections describe the first three steps of Booch's object-oriented design

technique as discussed in chapter II. This section also presents the object model of the

Saber simulation, constructed using the OMT.

3.3.1 Identify the Objects and Their Attributes. The first step to Booch's object-

oriented design and creating an object model was to identify and list all the object classes.

This was accomplished by extracting all the relevant noun and noun phrases from the

theses mentioned above. Table 1 is the resultant list of the identified object classes needed

for the simulation.
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Once the objects were identified, the attributes which define an object class needed

to be determined. As part of Horton's thesis, he created a listing of objects and their

attributes that are required for both the simulation and user interface. Since that time

several modifications and enhancements have been made to the simulation. Appendix

A contains an updated version of the objects required of the simulation along with the

attributes that define each object class.

3.3.2 Identify the Operations Suffered By and Required of Each Object. Once the

object classes and their attributes were determined, the associations between objects had

to be identified. The operations were determined by extracting verbs and verb phrases from

the requirements theses documents listed in Section 3.2. Appendix B is a complete listing

of the object classes along with a brief description of their required operations. As a result

of these first two steps, an object model was constructed. Figures 6 through 10 show the

object model. Rumbaugh's OMT notation is used. Boxed items represent object classes,

while the associations between the the object classes are represented by lines connecting

the object classes. Because the entire object model could not fit on one page, object

classes are redrawn in dashed boxes for ease of identifying associations between objects

on separate pages. Associations having links to more than two object classes are modeled

using a diamond with lines connecting the related classes. The solid and hollow balls at

the ends of the connecting lines represent the multiplicity of the association. Multiplicity

specifies how many instances of one class may relate to a single instance of an associated

class. A solid ball indicates a many (zero or more) relationship with its connected class

while a hollow ball indicates a zero-or-one relationship. For example, in Figure 7 a land

unit can have zero, one or many land unit missions, however, a particular mission can be

assigned to one land unit. The relationship between a land unit and ground component

is an example of a many-to-many relationship. A land unit can have zero or more types

of ground components (armored vehicles, tanks, etc), while each ground component type

can be part of zero or more land units. The absence of a ball at the end of an association

indicates a mandatory relationship. An example of this type of relationship can be seen in

Figure 9 between aircraft package and Air Force mission. An aircraft package must have

33



one and only one Air Force mission, while several of the aircraft packages can have the

same type of Air Force mission.

Generalization, also known as an "is-a" relationship, is also shown in the object

model. Generalization is the relationship between a class and one or more refined versions of

itself. The class that is being refined is called the superclass while the refined class or classes

are called the subclasses. An example of generalization can be seen in Figure 8 between

the superclass preferred weapons load and the three subclasses preferred conventional load,

preferred biological load, and preferred nuclear load. Its notation is a triangle connecting

the superclass and the subclasses. In this example, each of the subclasses inherit all of the

attributes and operations of the superclass. The subclasses' own unique attributes and

operations are what sets them apart from the other subclasses. The terms generalization

and inheritance are often used interchangeably.

3.4 Establish the Visibility of Each Object in Relation to Other Objects.

During this step of the design process, the visibility of each object was determined.

This was determined mainly from the constructed object diagram. For example, land units

object can have different types of weapons. Therefore, the land units object "sees" the

weapons object. The "with" statements in the specification and body of a package is Ada's

way of showing what objects are visible to other objects. Appendix C is a complete listing

of all the objects, indicating the visibility of each object with one another.

3.5 Establish the Interface of Each Object.

During this fourth step of Booch's five steps, the interfaces of each object were writ-

ten. This correlates to developing the Ada package specifications of each object. Most

of the interface procedures and functions matched with the operations identified for each

of the objects, however, throughout the development process, there were additional func-

tions and procedures required that were not originally anticipated. The code contains the

specifications of each object class.
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3.6 Summary

This chapter briefly described the first four steps of Booch's analysis and design

process that was conducted on the Saber simulation. During this process, emphasis was

placed on what was required of the simulation rather specific details of how things were

going to be implemented. At times, this was difficult because several portions of the

simulation were already coded, with only portions based on an object-oriented design.
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IV. Modifications, Clarifications, and Enhancements

4.1 Introduction

As mentioned in Chapter I, two previous thesis efforts were involved with imple-

menting portions of the simulation. Ness, who implemented the land battle, and Sherry,

who layed an object-oriented framework for the air battle and made a few modifications

to the land battle. The purpose of this chapter is to discuss details of modifications and

enhancements made to existing code that were conducted as part of this thesis. Discussion

first covers data structures followed by implementation details of the land and air battles.

4.2 Land Battle Modifications and Enhancements

Since Ness implemented the original land battle of the Saber simulation, there have

been several changes. One of the major changes was the conversion of many of the static

array information structures to dynamic linked list structures, as discussed in the following

chapter. These changes resulted in modifying a majority of the functions and procedures

of the land battle, however, the underlying implementation details remained intact. The

following sections describe other modifications and enhancements added to the land battle.

4.2.1 Land Unit Movement Algorithm. There were several modifications made to

the land unit movement algorithm implemented by Ness. Listed here are the major steps

of the modified movement algorithm:

1. Before a land unit begins to move, the possible directions of movement (N, NE, SE,

S, SW, and NW) are determined. The directions the land unit are allowed to move

include the three directions which will take the land unit in the general direction of its

mission location. Figure 11 is an example of a unit moving in a northeast direction.

The arrows indicate the three directions the algorithm would allow the unit to proceed

if there were no obstructions. Specifically, the solid arrows represent the routes the

land unit will ultimately be able to travel. The outlined arrows represent routes the

unit could have taken, but is unable to because one of the following reasons:
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Figure 11. Example 1: Land Unit Movement

"* there is an impassable obstacle at the hexside,

"* the hex it would enter would put the unit in the "no man's" zone, or

"* the unit would be traveling in the direction it just came from. There is an

exception to this last reason and is discussed later.

2. The optimum route based on the possible routes is then chosen. The attributes used

to determine the optimum route are:

* the present pie piece trafficability,

e the obstacles that are located at the border being analyzed,

* the pie piece trafficability of the adjacent hex,

e the weather of the adjacent hex,
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* and the distance from the adjacent hex to the unit's mission location. To ac-

count for the zigzagging effect of the ground hexes, 0.5 is subtracted from the

y coordinate of the odd columns when calculating the distances.

3. Once the optimum path is chosen, the time (grid-time) for the land unit to travel

to the border of the hex is calculated. The time is based on the calculated average

movement rate for all units, the movement rate of the lanA unit, the traversed pie

piece trafficability and the current weather.

4. Simulation of movement is accomplished by decreasing the grid.time of each land

unit having a mission. The decrease of the grid-time is performed during each time

slice of the simulation. As long as the land unit does not come in contact with an

enemy force the unit is allowed to move. If the land unit does come in contact with

an enemy force and at least one of the opposing land units has an attack mission,

attrition occurs and none of the contacted units can move. The units can only move

after one of the two units withdraws, the attacking unit receives an override mission,

or a unit is destroyed. If the land unit does come in contact with an enemy force,

but neither of the opposing land units have an attack mission, they gain intelligence

op each other and can continue to move.

5. After the grid.time of the unit falls below a user specified value, the land unit must

transition through the border. A new grid-time is then calculated which represents

the amount of time it will take the unit to overcome the border obstacles. If the land

unit has any engineering support units, it will overcome the obstacles much faster,

otherwise, the reduction of the grid.time will occur at the land unit's own engineering

rate.

6. When the land unit has overcome the border obstacles, it is removed from the old

hex and added to the new hex. If the new hex is not the final destination of the

land unit, the possible routes are determined, the optimum route is selected from the

possible routes, and the gridtime for the land unit to move from the border to the

new hexes' center and from the center to the border of the chosen route is calculated.

This process continues until the land unit has reached its mission location.
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Figure 12. Example 2: Land Unit Movement

Because this movement algorithm only looks one hex ahead in determining the best

possible route, it is possible for the land unit to enter into a trap (all three of its allowed

directions are blocked) as shown in Figure 12. The land unit starts out in hex 03 01 and

chooses to move into hex 03 02. Once there, all three of its allowed directions are block. If

this occurs, the land unit is allowed to traverse back in the direction it just came from (03

01). This is the exception "to not allowing a unit to move away from the general direction

of its mission location." For the next move, the land unit would have to travel in either a

northeast or a northwest direction and is not allowed to travel back into the trap since it

is the direction it just came from. The land unit chooses to move in a northeast direction

and eventually arrives at its mission location.

This movement algorithm, however, is not foolproof. From the example of Figure 12,

if the land unit would have decided to travel in a north west direction after backing out of

the trap, it would move into hex 02 01. From hex 02 01 it would be possible for the unit

to move into the same trap (hex 03 02). It would then back out of the trap (hex 02 01)
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and have no other choice but to move into hex 03 01, once again, and start the whole cycle

again never reaching its mission location. We considered developing some type of breadth

or depth first search, however, a complete exhaustive search of the optimum route may be

computationally intensive.

4.2.2 Land Unit Missions. In Ness' land battle, land units could only have one

mission at a time and it was necessary for the land unit to complete that mission before

it could start on another one. This meant that in order to move a land unit from one

location to another and then to another, it was necessary for the simulation to stop once

the land unit reached its first mission location, have the player input the new mission, and
)

then have the simulation run again for the unit to reach its final desired location. This

was not practical, plus with the addition of supply trains (discussed in a later section), it

was paramount that land units could have several missions without having the simulation

start and stop. To give the Saber simulation more flexibility, each land unit can now have

a queue of several missions, each with a requested day and period the mission should be

performed.

There are two types of land unit missions, regular missions and override missions.

The regular missions are performed starting on the requested day and period as long as

the land unit is not currently performing another mission. If the land unit is performing

another mission, the mission is delayed until the current mission is completed. The override

missions have a higher priority than regular missions. If a land unit is performing a regular

mission and a override mission is to be performed that day and period, the regular mission

will be aborted along with all the back logged regular missions. These aborted missions

are deleted and will not be executed after the override mission has been completed. It

should also be noted that an override mission does not have priority over another override

mission.

The addition of allowing land units to have many missions gives the player the

flexibility of entering as many missions as he/she chooses for the next simulation run. The

override missions allow the user to specify that a mission is to override the current mission

plus all back logged missions as it is possible for a land unit to be heavily delayed.
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4.2.3 Combat of Land Units. During each simulation time slice, opposing land units

which axe in contact (at least one land unit in contact must have an attack mission), will

engage in combat. During combat, the combat strength of the land units (their combat

power attribute), will determine the outcome of the engagement. The combat powers of

land units which are both at their final destination and defending, are calculated based on

the following:

1. The trafficability of the hex.

2. The amount of time the land unit has been in a defensive posture in the hex.

3. The firepower of the unit. In Ness' original land battle, the firepower was an ag-

gregated value representing the strength of the land unit. With the enhancements

introduced by Mann, each land unit now possesses specific numbers of component

types (tanks, helicopters, armored vehicles, etc.), each of which has a firepower score.

The land unit's firepower is now calculated by summing the firepower scores of each

of the component types multiplied by the quantity of that component type that the

land unit possesses. A land units ammo usage rate and fuel usage rates are also

determined by the amount and types of components it has.

If the land unit is not at its final location or is not defending, the combat power of the unit

is merely equal to the inherent firepower. This accounts for the advantages a defending

unit has over an attacking unit.

To simulate combat, the combat powers of all the land units within a hex are totaled

to represent the combat power (CP.Out) of the hex they are located in and distributed

proportionally against the hexes they are in combat with (CPGn). If a hex has opposing

forces on multiple sides, the hexes combat power is divided proportionally into the op-

posing hexes. The attrition of each hex is then calculated from the hexes combat ratio

(CPIn/CPOut) and a user defined combat ratio adjustment. The hex's attrition rate is

then applied to each of the land units located in the hex. Ness applied attrition by sub-

tracting from the land units firepower, however, now attrition occurs by destroying land

units components. For example, suppose a land unit possesses the component types and
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numbers shown in Table 2. If the land unit experiences an attrition rate of 34%, it will

take the losses shown in Table 3.

Table 2. Example Land Unit's Componeats
Component Type Quantity

M1A1 25
M107 14
TOW 3

FROG3 36

Table 3. Example of a Unit's Losses with 34% Attrition Rate
Component Type Quantity Lost Amount Remaining

M1Al .34 X 25 = 9 16
M107 .34 X 14 = 5 9
TOW .34 X 3 = 1 2

FROG3 .34 X 36 = 12 24

Because parts of components cannot be destroyed (for example, one half of a tank

cannot be destroyed), the numbers of components lost are rounded to the nearest integer.

The land units new firepower is now calculated on the components it has remaining.

4.2.4 Logistics. Transportation and distribution of supplies is the primary worry

of the logistician.(8) Ness' land battle simulated logistics, however, the manner in which

it was accomplished was unrealistic. During each simulation time slice, every land unit

automatically received supplies from its depot land unit. Because of this, it was not

possible for enemy forces (land units, air interdiction) to target supplies as they were

being transported to front line troops.

The addition of supply trains, which provide supply transportation, adds to the

realism of the Saber simulation. The supply trains are specialized land units and are able

to carry ammunition, petroleum, hardware supplies, and aircraft spare parts from either

land unit depots or airbase depots. Because supply trains are specialized land units, they

perform all the same operations. This includes movement and the ability to be targeted

by enemy forces. If the supply train is targeted and hit, the amount of supplies the supply

train carries is reduced by its attrition rate.
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There are two types of supply trains. A regular supply train (ST) and a predeter-

mined supply train (PST). The ST is a "one way" supply train that transports logistics

supplies from either a land or airbase depot to one or more land units and airbases. Once

the ST supply train has finished its supply missions it then remains at its last location

until it receives additional orders. The PST is different from the ST in that it continues to

perform its missions over and over. After the PST performs its last mission, it returns to its

originating depot, gets resupplied, and sets off to perform the same missions. If the supply

trains are destroyed before they reach their destinations, it is the players responsibility to

regenerate another ST or PST.

As part of the Saber group meetings, it was decided that the best way to model overall

logistics movement among land units was to have the supply trains transport supplies from

land depots (DEPOT) to front line depot support units (DPSUP). The front line fighting

units would then receive supplies automatically from their depot support unit. This is

accomplished each time slice by calculating the current capacity of each depot support

unit. Each land unit then takes on the capacity of its depot support unit only if its own

current capacity is lower. If a land unit does not have a depot support unit, the only way

for it to be resupplied is with a ST.

Figure 13 is an example of supply train movement. It depicts the actions of a PST

originating from its resupply land depot, providing supplies to depot support units, and

returning back where it will resupply to continue the loop. The solid arrows indicate the

automatic disbursion of supplies from the the depot supply units to its supporting units.

Figure 13 also depicts a ST which moves from the land depot to its mission location and

another PST which acquires its supplies from an airbase depot, supplies the airbase and

returns. Once the ST reaches its destination, it waits for further orders, while the PST

will continue to supply the airbase.

4.3 Air Battle Modifications and Enhancements

Sherry conducted an object-oriented design on the conceptual model developed by

Mann. This section describes the specific design details of the implementation of the air

battle.
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Figure 13. Supply Train Movement

4.3.1 Aircraft Package Movement Algorithm. As part of Sherry's thesis, she de-

veloped an initial aircraft package movement algorithm. For sake of consistency, it was

decided to change the movement algorithm making it as similar to the land unit movement

algorithm as possible. This new movement algorithm is much simpler and a more direct

route is taken to the target and back.

The only aspect considered in the movement algorithm is what air hex will take the

aircraft package closer to its destination. This is accomplished by calculating the distances

from each of the six surrounding air hexes the aircraft package is currently located in and

selecting the air hex with the shortest distance to the aircraft package's destination. Figure

14 is an example of an aircraft package moving from its start hex (030604), to its target

location (032114), and back.

4.3.2 Formation of Aircraft Packages. Players input aircraft packages they wish to

be executed. Each aircraft package has a mission, a region from which the aircraft package
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Figure 14. Aircraft Package Movement

will be formed, a rendezvous hex, a target, a priority, a day and period it is to be executed,

and a list of primary aircraft. Along with the primary aircraft, aircraft packages can also

have support aircraft which include escort, SEAD, ECM (Electronic Counter Measures),

and refueling ircraft.

At the beginning of each time slice, requested aircraft packages are attempted to be

formed. Aircraft packages that were delayed from the previous time slice are attempted

first. The current aircraft packages are then attempted starting with the one that has the

highest priority. In order for an aircraft package to be successfully formed, the bases in

the region from which the aircraft package will fly are polled for aircraft availability. In

order for a base to dedicate an aircraft the following are checked:

* the base's weather is sufficient for the base to operate,

* the base's weather is sufficient for the aircraft to fly,

* the aircraft is not in maintenance,
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"* the runway length at the base is long enough for the aircraft,

"• the base has enough fuel for the aircraft,

"a the base has the weapons available for the aircraft,

"* and the target is within the range of the aircraft or refueling aircraft are available.

In forming an aircraft package, a check is first made to determine whether the mini-

mum amount of aircraft are available. There are minimum percentages of primary, escort,

SEAD, ECM and refueling aircraft that are needed before the aircraft package will be al-

lowed to perform its mission, each of which are user specified. If the minimum aircraft are

available, the aircraft package is formed. If aircraft are still available, the aircraft package

is filled to its requested aircraft numbers. If the minimum aircraft are not available, the

aircraft package is delayed until the next time slice where it will once again attempt to be

formed. If it fails a second time, the aircraft package is cancelled.

4.3.3 Aircraft Package Missions. Once the aircraft packages are formed, they are

ready to be executed. Each aircraft package starts at its designated rendezvous hex. The

level at which the aircraft packages will fly is the highest allowed by the aircraft which

comprise the aircraft package.

The simulation begins by performing all the area missions first. To simulate each

of the area aircraft packages happening simultaneously, each package is flown in sequence

one air hex at a time. This is then continued until all the area packages have reached their

mission locations. Once all the area aircraft packages have reached their mission locations,

the strike missions are performed. Again, each strike aircraft package moves one air hex

at a time.

4.4 Summary

This chapter described the changes and enhancements to Saber that were conducted

as part of this thesis. Some of the changes included modifications to the movement al-

gorithms for both the land units and aircraft packages. Each of these were described in

detail. Enhancements included the ability for land units to have more than one mission,
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the addition of logistics movement through the use of supply trains, and the formation of

aircraft packageses. Also included was a description of how the results of combat between

land units is resolved.

The following chapter will describe the implementation details of the simulation.
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V. Implementation

5.1 Introduction

The last of Booch's object-oriented design steps is to actually implement each of the

objects. This chapter includes a discussion of the data structures used to implement each

object. It also describes the extensive testing that was accomplished during implementation

phase.

5.2 Information Structures

The type of data structures, and the manner in which they are used in large programs,

can play a very important role in determining the execution time and memory requirements

necessary to run the program. Often, it is just these two aspects, speed versus memory,

that need to be considered. The following sections describe the data structures used to

implement each of the primary information structures.

5.2.1 Land Unit Structure. In the initial land battle implemented by Ness, the data

structure used to represent land units was an array of records. Each record contained the

general characteristics of the land unit plus an access type which "pointed" to another

land unit for the purpose of stringing units together that were located in the same ground

hex. In Ada, it is necessary to declare the size of an array prior to compilation time,

therefore array sizes were "hard coded" into the simulation. This detracted from the

desired flexibility of Saber in which the number of land units involved in the simulation

could range from just a few to several hundred.

For purposes of using memory space efficiently, using a linked list of nodes is appro-

priate. In Ness' thesis, he discusses the idea of using a linked list to represent the land

units, however, he reverted to the array structure "because of the inability of MS-DOS

and the Janus Ada complier to handle access types that used over 64K of RAM"(17). The

Saber simulation is now being compiled using VERDIX Ada and run on a Sun Sparc II

workstation alleviating this problem.
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Figure 15. Example Structure of Simulation Land Units

Figure 15 shows the implemented information structure of the simulation land units.

Access to the linked list always takes place through the head of the list, where each node

is traversed until the desired land unit is found. This traversal of the linked list has an

execution time slower than the direct access of an array structure, however, flexibility

and memory requirements were the factors for using linked lists. The execution time

requirement (four hours between input and analysis) does not seem to be a problem,

however, at the current time, there have been no execution times run against different

(large scale) scenario sizes.

Looking at Figure 15, each node of the land units list stores the characteristics of

a land unit in a record type. Within the record type there are additional data struc-

tures. This includes additional access types which are used to hold the following land unit

information:
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1. which units it supports,

2. the missions it must perform,

3. the override missions it must perform,

4. the types and quantities of components (tanks, armored vehicles, etc.) it possesses,

5. the types and quantities of weapons it possesses, and

6. the types and quantities of radars it possesses.

Again, by using linked lists, the simulation will dynamically allocate memory only as

needed.

Several other simulation objects were implemented in the same fashion as the land

units. These include the :

1. supply train object,

2. base object.

3. depot object,

4. aircraft object, and

5. the aircraft package object.

5.2.2 Ground Grid Structure. The original ground grid system implemented by

Ness was a two dimensional array in which the vertices pointed in a north and south

direction. During Sherry's thesis effort, it was decided to modify the ground grid structure

so that the vertices would point in a east and west direction. This change was made in

order to stay consistent with the current grid structures used by other war games at the

Wargaming Center, Maxwell AFB and allowed existing code provided by the Wargaming

Center to be used in the Saber user interface(12). Figure 16 shows the old and current

ground grid structures and their numbering schemes. As a result of this modification,

several changes to the land battle were required. In the old hex system, the x and y

coordinates followed straight lines. The x coordinate running in a north-east and south-

west direction, and the y coordinate running directly east and west. As a result, the x
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Figure 16. Old and Current Ground Hex Systems

and y differences moving from hex to hex in a particular direction were always the same.

For example, moving from any hex in a northeasterly direction, the x coordinate did not

change and the y coordinate increased by one. In the current hex system the x coordinate

runs in a north and south direction, however, the y coordinate does not run in a straight

line, but zigzags as it runs from east to west. As a result, the x and y differences moving

from hex to hex in a particular direction are not always the same. For example, moving

in a northeasterly direction from hex 01 01, the x coordinate increases by one and the

y coordinate stays the same. Now, if you move in a northeasterly direction from hex 02

01, the x coordinate still increases by one, but the y coordinate also increases by one. To

accommodate this zigzaging of the y coordinate, simulation code had to be duplicated.

Once if the originating hex belonged to an even column, and the other if the hex belonged

to an odd column.
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Each ground hex (array element) is composed of a complex information structure.

An example gruand hex, 04 09, is shown in Figure 17. The top level data structure is

a composite record type, and contains the hexes characteristics (weather, weather zone,

force, mission, etc.). It also contains an array of the hexes six pie pieces (N, NE, SE, S,

SW, NW). The example shows the structure of the north east side. Each hex pie piece is

a record type which describes the characteristics of the of the pie piece as well as the side

of the pie piece. For example, Hexside_[d is the unique identifier of the side, Feba indicates

whether the side is part of the forward edge of the battle area, River indicates if there is

a river or stream at the side, and Traffic indicates the trafficability of the entire pie piece.

The top level record type also contains access types to lists of land units, bases, and depots

that are located in the hex. Due to the tremendous amount of structural sharing taking

place, these lists contain only the land units, bases, and depots identification numbers, and

not pointers to the actual information structures. This increases the amount of overhead

required, however, the amount of structural sharing and complexity are greatly reduced.

The added overhead comes in the form of searching the linked lists to obtain the desired

object information rather than having direct access. For example, if the total combat

power of a hex needs to be determined, the list of land units in the hex must be traversed

one by one, stopping to traverse the linked list of land units to obtain the combat power

of each land unit.

5.2.3 Road, Railroad, and Pipeline Structure. Road. railroad and pipeline segments

are located in a ground hex pie piece and run radially outward from the hex center to a hex

side. During implementation, it was decided to place these structures individually within

their own Ada packages rather physically adding them to the structure of the ground hex

pie piece. Road, railroad and pipeline segments are targetable entities in the simulation.

If the segments were physically placed within a ground hex, all the ground hexes and their

pie pieces would need to be searched in order to find a particular road, railroad, or pipeline

segment. Placing each of these segment types within their own package, allows for quick

access to a particular segment and also allows for the ability to traverse the road, railroad,

or pipeline segments that make a larger road, railroad, or pipeline.
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Figure 17. Structure of a Ground Hex

5.2.4 Air Grid Structure. The basic air grid structure was not changed from the

sparse matrix implemented by Sherry. The sparse matrix provides an array of air hexes.

The size of the array is hard coded in the simulation and should be close to the actual

number of air hexes. This value can be easily calculated by taking the number of ground

hexes, dividing by seven (each air hex encloseE seven ground hexes), and multiplying by

six (the number of air hex levels). Each array element is then composed of the air hex

number, and a composite record type, which contains the air hex characteristics (weather,

trafficability, etc.) and access types pointing to lists of aircraft packages and satellites

located within the air hex. Just like the units list in a ground hex, the aircraft package

lists do not contain all information on the aircraft packages nor does it give you direct

access to the information. The lists contain only the aircraft packages identification. In
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order to obtain the information on a aircraft package the simulations linked list of aircraft

packages must be searched.

5.3 Information Hiding of Saber's Objects.

In the last section, some of the object data structures were described. These data

structures are important, however, they should be hidden from higher level program units

through information hiding. "Information hiding is the practice of concealing implemen-

tation details from higher level program units, so that, at any given level of program

development, the programmer has access only to the degree of detail that he needs (14)."

Information hiding in the program promotes modifiability, reusability, and reliability. As

an example, the following paragraphs describe how information hiding was accomplished

on the land unit object.

As discussed earlier, the land unit structure is complex, having multiple linked lists

within another linked list. This complexity is hidden from higher level units by placing the

declarations of both the land units data type and data structure in the body of the land

units package were it can only be "seen" and used by the body itself. The only way for a

higher level program unit to access the information of a land unit is through the package

specification. If a higher level program unit wanted to find the location of each land unit

in the simulation, the code in Figure 18 would be used.

The procedure Set-First-LandUnit sets an internal pointer to the first land unit

in the linked list of land units. When the NextLandUnit procedure is invoked, if the

internal pointer is not pointing to a null value, the land unit number (LandUnit-No) is

returned and the status value (Another-LandUnit) is set to true indicating that there

was another land unit. The internal pointer is then set to the next land unit in the linked

list. If the internal pointer is pointing to a null value, the status value is set to false

indicating that there are no more land units.

The land unit number is the key for gaining information of a particular land unit.

As shown in the above code, the location of each land unit is obtained by passing the
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with Land-Units;

procedure Traverse-.Units-.Locations;

Land-.Unit-.No :Integer;
Another..Land-Unit :Boolean;
Location-..f-Land-Unit :Integer;

begin
Land-Units.Set...First-.Land-.Unit;
Land-.Units. Next...Land-Unit (Land-Unit..-No, Another-.Land-.Unit);
while Another-.Land..Unit loop

Location-.Of-.Land-.Unit := Land..Units.Location_.Of (Land-.Unit-.No);
Land-.Units. Next...Land-Unit (Land-Unit -.No, Another-..Land-.Unit);

end loop;
end Traverse-.Units...Locat ions;

Figure 18. Example Code - Traversing Simulation Land Units
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with Land-Units;

with Ground-Components;

procedure FirepowerOfLandUnit (LandUnitNo) is

Ground-ComponentDesignation : String(1..5);
Quantity : Integer;
AnotherGroundComponent : Boolean;
Firepower : Integer := 0;

begin
LandUnits. SetFirstGroundComponent (LandUnitNo);
LandUnits.NextGroundComponent(GroundComponentDesignation, Quantity,

AnotherGroundComponent);
while AnotherGroundComponent loop

LandUnits. NextGroundComponent (GroundComponentDesignation, Quantity,
AnotherGroundComponent);

Firepower := Firepower +
(GroundComponents. FirepowerWeightOf (GroundComponentDesignation)

Quantity;
end loop;

end FirepowerOfLandUnit;

Figure 19. Example Code - Firepower of a Land Unit

land unit's number to the function Location-Of. All other attributes of a land unit are

acquired through similar functions.

To obtain the ground components of a particular land unit, a similar technique is

used as described above. Figure 19 is an example of code that would be used to calculate

the firepower of a land unit.

The Set-FirstGroundComponent procedure sets an internal pointer to the first

ground component of the desired land unit. As long as the internal land units ground

components pointer is not equal to null, the Next-GroundComponent function re-

turns the ground component designation and quantity and updates the internal pointer to
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the next ground component. The status value is also set to true indicating that there is

another ground component for land unit 101. For each ground component designation, the

firepower weight is obtained by calling the Firepower.Weight-Of function in the ground

components package. This value is then multiplied by the quantity and then added to the

overall firepower of the unit. The loop continues until the there are no more ground com-

ponents, indicated by a false value for the status value Another-Ground-Component.

With the procedures and functions described above, the users of the land units spec-

ification have no idea of the underlying data structures used to implement the land units

object. This enhances maintainability of the code by reducing the coupling between ob-

jects.

5.4 Enhanced Performance of Implemented Objects

Let's consider a typical scenario where a supply train reaches a land unit it is to

resupply with ammunitions and fuel. The resupply of the land unit is accomplished by

envoking the procedures IncreaseAmmo-OfUnit and IncreasePolOtfUnit pass-

ing the land unit's unique identification and quantities to be resupplied. When In-

creaseAmmo-OfUnit is executed, the linked list of all the simulation land units is

traversed until the particular land unit's identification is found. The ammunitions of the

land unit is then increased by the quantity to be resupplied. When IncreasePolOfUnit

is executed, the search for the land unit starts again at the beginning of the linked list.

To prevent this type of unnecessary searching, several options were considered. The

first option was to implement the appropriate objects using hash tables, however, due to

time constraints this was not pursued. Although this was not pursued, it should be the

focus of further research. The second option was to create a small cache within each of the

appropriate objects. The cache would contain pointers to each of the object instances that

were most recently accessed, however, in order to accomplish this, pointers into the middle

of the instantiated linked list would necessary. This would violate the linked list abstract

data type. The third option, and the one used to speed up the simulation, involved moving

object instances within the linked list. As an object instance is accessed, it is removed from

its current position in the linked list and placed at the front. Now, if several attributes of
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the same object instance are accessed close together, the access time will be reduced since

the object class will be located towards the front of the linked list. This is very similar

to the second option in that the most recently accessed object instances will be located

towards the front of the list. On the average, this will provide much faster access times to

object instances and the larger the simulation grows, the greater this enhancement will be

noticed. During simulation execution, it is sometimes necessary to traverse all the object

instances. In these cases, the rearranging of the object instances is not completed, as it

would invert the linked list and would not result in simulation speedup.

5.5 Testing

As part of Horton's thesis effort, he constructed the flat files necessary for a Korean

scenario. For testing purposes, especially during the development phase of the simulation,

this large Korean scenario proved to be cumbersome for practical, rapid testing.

A mini scenario was created to provide a smaller workable environment on which

testing was conducted. The mini scenario has a 10 x 10 ground grid structure and did

not conform to any real geographical location, but was concocted so that most possible

battle scenarios could be represented. The mini scenario had a few instances of each object

(about ten land units, four airbases, two depots, etc.), just enough to provide all possiblo

test cases. As each of the objects were developed, test procedures were written and run

against the mini scenario in order to verify the desired functionality.

5.6 Summary

This chapter described the significant issues of the Saber simulation implementation.

A description was given of the data structures that are used by each of the major objects.

Although some of these data structures are complex, once the interface of each object is

developed, the users of the object are unaware of the underlying structures. This allows

the data structures of an object to be modified without causing a ripple effect through

other code. The end of the chapter briefly described the mini scenario that was created

for testing purposes.
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The next chapter summarizes this entire thesis effort and gives recommendations for

future expansion and enhancements to the Saber simulation.
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VI. Recommendations and Conclusion

6.1 Summary

This thesis effort involved conducting an object-oriented analysis, design and im-

plementation of the air and land battle for the Saber theater-level war game. Several

thesis efforts prior to this thesis were devoted to the development of the Saber simulation.

Ness was responsible for the initial version of the stand alone land battle and Sherry took

Mann's conceptual model and conducted an object-oriented analysis and completed a lim-

ited amount of implementation. This thesis integrated both the air and land portions into

an air land battle simulation.

The methodology used to conduct the object-oriented design was Booch's five step

process. These steps included:

1. Identifying the objects and their attributes. The objects and attributes were ex-

tracted by considering the nouns used in previous theses (mainly Ness and Mann's).

2. Identifying the operations needed for each object. The operations were determined

by examining the verbs that were performed on each object.

3. Establishing the visibility required between objects. This was accomplished by de-

termining what objects needed to interact with other objects.

4. Establishing the interface for each object. This consisted of creating the Ada package

specifications and successfully compiling them.

5. Implementing each object. This was accomplished by writing an Ada package body

for each of the identified object classes. The implementation of the simulation is

not complete due to time constraints, however, a reduced functional model is up

and running. The translation of existing code into the object-oriented design proved

to be cumbersome at times. Much of the previous code did not conform to object-

oriented methods. Many of the air and land battle algorithms were also modified

to accommodate enhancements. The code that was generated with this thesis effort

provides a solid object-oriented foundation on which the simulation can continue to

mature, be modified and enhanced with relative ease.
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As part of the analysis and design phase, an object model using Rumbaugh's notation

was constructed. The object model captured the static structure of the system by showing

the objects in the system and the relationships between the object classes.

During implementation of the object classes, object-oriented techniques were fol-

lowed. This entailed developing the object class Ada specifications such that a user would

be unaware of the underlying implementation details. For example, the user would be

unaware whether an object class was implemented using an array or linked list structure.

Also, during the implementation phase, some of the object classes were packaged individ-

ually while others were combined within a single Ada package. For example, the land unit

missions object was packaged within the land units object because a particular land unit

mission belongs to only one instance of a land unit. Although a road segment belongs to

a particular ground hex pie piece, the road class was individually packaged because it is

targetable by enemy forces. By individually packaging the road object, it is much easier

and quicker to identify the attributes (for example, its location) of a road segment or to

traverse the road segments that are associated with a road name or number.

6.2 Recommendations for Follow-On Efforts

This thesis provided a strong object-oriented design of the Saber simulation. As

mentioned earlier, there are still portions of the simulation that must be completed before

it can be considered fully functional. The following are specific areas that require further

study. Some of these items must be accomplished to complete the simulation, while others

indicate recommendations of further research.

There are still portions of the air battle that must be completed. The formation of

aircraft packages and their movement to their target location and back are completed,

however, the portions of the air battle that must be completed are:

1. The detection of aircraft packages by enemy SAM sites and patrolling aircraft

as they traverse their mission route.

2. The resolution of conflict between enemy engagements.
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3. The amount of damage the aircraft package inflicts on its target once it has

released it weapons load.

"* System integration must be conducted. This includes integration of the simulation,

user interface, and history file which is produced by the simulation to provide the

graphical postprocessor an account of events and status that occurred during simu-

lation runs. Verification should also be conducted on the database in order to verify

that the fiat files it generates match with requirements of the simulation and user

interface/postprocessor.

"* As mentioned earlier, the current movement algorithm of land units is sufficient but

not foolproof. With the current movement algorithm, it is possible for a land unit to

become trapped and be unable to complete its mission. This trapping occurs due to

the fact that the movement algorithm only looks one hex ahead in its selection for

the land unit's route. Further research should be accomplished to enhance the land

unit movement algorithm. Suggestions include some sort of depth or breadth first

search to determine the best possible route, however, it would not be practical to

complete an exhaustive search as this would become to computationally intensive.

"* The structures of roads, railroads and pipelines have been designed and implemented,

however, utilization of these assets are not fully exploited. Improvements should be

added to the simulation so that roads play a larger role in the movement of units

and railroads and pipelines play a larger role in the movement of logistic supplies.

"* Much like the land unit movement algorithm, the aircraft package movement algo-

rithm is sufficient for a first iteration, l'wvever, it could also use some improvements.

Currently, the aircraft package movement algorithm will select the highest level at

which all the aircraft that compose the aircraft package can fly. The aircraft package

will then fly in a straight line to its target, the primary aircraft will release their

weapons at a selected optimal level, and then the aircraft package will return in

a straight line at the highest level possible. Further research should be conducted

to determine the validity of the current movement algorithm. Perhaps the aircraft

67



package movement algorithm should be modified so that it will select the path of

least resistance, changing altitudes as its traverses to its target and home.

"* Additional work must still be accomplished on the use of satellites. Procedures and

algorithms need to be designed and implemented for the movement of satellites and

the intelligence they will provide to the battle.

"* The testing up to this point has been conducted on a mini scenario containing only

a handful of land units, bases, depots, aircraft packages, obstacles, etc. Further

verification and validation should be accomplished on larger sized scenarios for which

the simulation is intended. Although it is expected that speed will not be a problem,

further research could be conducted in the use of the Ada task construct or the use

of a parallel processor machine.

"* Further work needs to be accomplished is the area of nuclear and chemical warfare.

Many of the basic building blocks are already available to conduct non-conventional

warfare, however, specific procedures and algorithms need to be developed and im-

plemented.

"* Currently an airbase can have a mission of DEPLOY, however, the mechanism for

a base to deploy do not currently exist. Further research needs to be conducted to

determine whether entire bases or parts of bases deploy. For example, certain USAF

Red Horse units deploy in time of war as well as aircraft and supporting personnel.

"* Currently there are only two forces, RED and BLUE, that are involved in the sim-

ulation. Further research could be conducted in the area of multiple-sided warfare,

which would allow additional forces, such as YELLOW or GREEN, to participate.

"* Further research and development could be conducted to speedup the execution of

the simulation. For example, current links between ground hexes and the land units

located in a ground hex are maintained as a linked list of the land units unique

identifications (natural number). A tremendous amount of speedup could be obtained

by maintaining a linked list of access types rather than the unique identifier. This

would allow direct access to each of the land units located in the hex rather than
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traversing the entire linked list of land units to find each of the land units. However,

careful consideration of the impact on the object-oriented design will be required.

6.3 Conclusion

This thesis documented the object-oriented analysis, design, and implementation of

the Saber simulation. It showed how the Ada programming language was used to suc-

cessfully develop the Saber simulation. The object-oriented design provides a platform on

which the simulation is flexible, easy to understand, and easy to maintain. The simula-

tion is only one component of the Saber war game, and once completed and integrated

will provide a tool that will help teach air and ground employment doctrine to the future

leaders of the United States Air Force, all other services and its allies.
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Appendix A. Object Classes and Their Attributes

This appendix lists all of the object classes (alphabetic order) and the attributes
that define the object classes. There are several object attributes that are not used by the
simulation, however, must be read in order to regenerate the fiat files. Brief definitions axe
given for the attributes used by the simulation. Attributes read, but not used are by the
simulation, axe not defined and marked as such. For complete definitions of all attributes
and example values, see the database data dictionary.

+ indicates attribute is read by simulation but not used except for regeneration of flat
files.

* indicates attribute not read in but needed by simulation.

# indicates attribute not currently used by simulation.

"* AIR HEX

1. AirI-exWeather - (actual-wx) The actual weather that is occuring in the air
hex.

2. Weather-Zone - (wz) The weather zone of the air hex

3. Attrition - Attrition of the air hex.

4. EC - Electronic countermeasure of the air hex.

5. Trafficability - Trafficability of the air hex.

6. Persistence - (persistencetime) The time remaining the air hex will feel the
effects of a nuclear or chemical weapon.

7. (*) BlueAcpkgList - Linked list of blue aircraft package identification numbers
located in the air hex.

8. (*) RedAcpkgList - Linked list of red aircraft package identification numbers
located in the air hex.

9. (*) Satellite-List - Linked list of satellite identification numbers located in the
air hex.

"* AIR-TO-AIR MISSILE

1. Designation - The alphanumeric designation of the air-to-air missle.

2. Force - The color designation of the weapon.

3. Miss-Range - (range) The range of the air-to-air missle.

4. SSPK - Single shot probability of a kill.

"* AIR-TO-GROUND MISSILE

1. Designation - The alphanumeric designation of the air-to-ground missle.
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2. LeathalityRadius - (lethal-radius) The lethal blast radius of the surface-to-
surface missle.

3. CEP - Circular error of probability.

4. PKdHardPoint -Type - (pk.hard) The probability of destroying a hardened tar-
get with a direct hit.

5. PKvMedPointType - (pk-med) The p,'obability of destroying a medium-hardened
target with a direct hit.

6. PKSoft-PointType - (pk-soft) The probability of destroying an unhardened
target with a direct hit.

e AIRBASE (DEPOT)

1. BaseId - (airbase-id) The unique identifier of the base.

2. (+) FullDesignator - The full alphanumeric designation of the airbase.

3. (+) AbbrevDesignator - The abbreviation of the full designator field.

4. (±) Command - The air force command that operates the base.

5. Country - The country the base is located in.

6. Force - The color designation of the base.

7. (+) HQ - The command headquarters of the base.

8. (*#) MoveAllowed - Boolean value indicating whether the base can deploy of
not.

9. Mission - (base-mission) The mission of the base.

10. PresLoc - (location) Present location of the base.

11. FutLoc - (future-location) Future location of the base.

12. Width - Width of the base.

13. Length - Length of the base.

14. Region - The region the base is located. (Note : Region also defines the area of
a hex a land unit is located (center, border)).

15. Weather-Min - (weather-minimum) The minimum amount of weather necessary
at the airbase in order to fly any missions.

16. (*) IsBaseOverrun - Boolean value indicating whether the base is overrun.

17. (*) IsBaseWithinEnemyArt - Boolean value indicating whether the base is
within the range of enemy artillery.

18. (*) Is-BaseUnderNucChemAtk - Boolean value indicating whether the base
is under chemical or nuclear attack.

19. ActiveEnemyMines - (enemy.mines) The number of enemy mines that have
been dropped on the base.

20. Mopp.Posture - Mopp posture of the base.
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21. Is.Base-Under.AirAttack - Boolean value indicating whether the base is under
air attack.

22. Pol.SoftStore - The amount of petroleum, oil, and lubricants the base has in
soft storage.

23. PollHardStore - The amount of petroleum, oil, and lubricants the base has in
hard stroage.

24. MaxPolSoft - The maximum amount of petroleum, oil, and lubricants the base
can have in soft stroage.

25. MaxPolHard - The maximum amount of petroleum, oil, and lubricants the
base can have in hard stroage.

26. Maint.PersOnHand - (maint-personnel) The number of maintenence personnel
at the base to repair aircraft.

27. MaintHrs-Accum - The number of maintenance hours accummlated at the base.

28. MaintEquipOnI-Hand - (maint-equip) Maintenance equipment located on the
base.

29. SpareParts - The amount of spare airplane parts at the base.

30. Max.Ramp-Space - The maximum ramp space at the base for parking aircraft.

31. Ramp..Avail - The amount of ramp space currently available at the base.

32. Shelters - The number of shelters at the bwe.

33. EODCrews - The number of explosive ordinance crews at the base.

34. RRR.Crews - The number of rapid runway repair crews available at the base.

35. (+) VisToEnemy - Visibility of base to the enemy.

36. Status - The status of the base (active, overrun. etc.).

37. No-Times-Atck - Total number of times the base has been attacked.

38. Intel-Index - Intelligence index of the base.

39. Alt-Bases - Linked list of alphanumeric designators of base's alte-riate airbases.

40. Base-Weapons - Linked list of weapons at the base.

- Designation - The alphanumeric designation of the weapon type.

- Quantity - The quantity of the weapon the base has.

41. Base-AcAvail - Linked list of aircraft available at the base.

- Designation - The alphanumeric designation of the aircraft type.

- Quantity - The quantity of the available aircraft the base has.

42. Base "_Maint - Linked list of aircraft in maintenance at the base.

- Designation - The alphanumeric designation of the aircraft type.

- Quantity - The quantity of the maintenance aircraft the base has.

- MaintTimeRemaining - The amount of time the aircraft have remaining
before maintenance is completed and can be returned to available status.
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* AIRBASE COMPONENT

1. Designation - The alphanumeric designation of the airbase component.

2. Target-Weight - (target-wgt) The weight of the component.

3. Length - Length of the component.

4. Width - Width of the component.

* AIRCRAFT

1. Designation - The alphanumeric designation of the aircraft type.

2. Force - The color designation of the aircraft type.

3. (+) Common-Name - The Nato common name of the aircraft type.

4. Night-Cap - (night-capability) The percentage of the aircraft's full capability
that can be used at night.

5. Weather-Cap - (wx.capability) The minimum weather conditions that the air-
craft type can fly a mission in.

6. Size - (ac-size) The size of the aircraft type.

7. AvgSortiesPer-Week - (sorties-week) The maximum number of sorties per
week that the aircraft type can fly.

8. Search - The diameter of the aircraft type's sensor detection area in kilomenters.

9. EC - Electronic countermeasure of the aircraft type.

10. Max-Speed - The maximum speed the aricraft type can fly (km/hr).

11. Combat-Radius - (raduis) The maximum radius the aircraft type can fly without
being refueled.

12. Loiter-Time - The length of time the aircraft type can circle over a battle area.

13. Cargo - The cargo capacity of the aircraft type.

14. Recon-Ability - The reconaissance ability of the aircraft type.

15. Refuel - (refuelable) Boolean value indicating whether the aircraft type '-an be
refueled in flight.

16. MaintDist - (maintain-dist) Maintenance distribution type for the aircraft type.

17. MaintMean - (maintain-mean) The mean (average) of the maintenance distri-
bution.

18. MaintStandDev - (maint-standev) The standard deviation of the aircraft main-
tenance distribution.

19. Amt-Spares - (spare-parts) The number of spare parts required by the aircraft
type.

20. Pol - (pol-usage-rate) The amount of petroleum, oil, and lubricants the aircraft
type uses per day.
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21. Ramp - (ramp-space) The amount of ramp space taken up by the aircraft type.

22. MinRunwayNeeded - (min-runway) The minimum runway length needed by
the aircraft type to take off.

23. AirAirRating - (a2a-rating) The air to air combat (dogfight) rating of the
aircraft type.

24. Air-Ground-Rating - (a2g-rating) The air to ground attack rating of the aircraft
type. The ability of the aircraft type to accurately atack ground targets.

25. MaxHex-Level - The maximum air hex level that the aircraft type can achieve.

26. WeaponsReleaseLevel - The level in which the aircraft type will release its
weapons and achieve its highest probability of hitting its target.

27. (*) PCL - The aircraft type's preferred conventional loads.

- Mission - (mission-type) - The mission the aircraft is to fly.

- Load - Two dimensional array (current weather , hardness of target) that
gives the identification of a weapons load. See weapons load object for its
attributes.

28. (*) PBL - The aircraft type's preferred biological loads. Same attributes as
PCL.

29. (*) PNL - The aircrft type's preferred nuclear loads. Same atributes as PCL.

e AIRCRAFT PACKAGE

1. Missionld - The unique aircraft package identifier.

2. Force - The color designation of the aircraft package.

3. (+) HQ - The command headquarters of the aircraft package.

4. Primary-Mission - (mission-type) The primary aircraft package type.

5. (*) Present-Location - The present location of the aircraft package.

6. TargetId - The unique identifier of the aircraft package's target.

7. (*) Mission-Location - The location of the aircraft package's target.

8. RqstPrdOnTarget - The requested period that the aircraft package should hit
its target.

9. Rqst_.DayOn-Target - The requested day that the aircraft package should hit
its target.

10. Actual_-Start Prd - The actual period that the aircraft package hit its target.

11. Actual_-Start.-Day - The actual day that the aircraft package hit its target.

12. Loiter-Time - The time the aircraft package should circle over its target.

13. Rqst-Return-Prd - The requested period that the aircraft package should return
to its bases.

14. Rqst-ReturnDay - The requested dat that the aircraft package should return
to its bases.
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15. ActualReturnPrd - The actual period that the aircraft package returned to its
bases.

16. ActualReturn-Day - The actual day that the aircraft package returned to its
bases.

17. Priority - The aircraft package's priority.

18. Activated - Boolean value indicating whether the aircraft package was activated.

19. RendezvousI-ex - The air hex that the aircraft package start from.

20. Region - The region in which the aircraft package is formed.

21. (+) Distance - The total distance that the aircraft package can fly. This is based
on the aircraft in the package which flies the shortest distance.

22. (+) Altitude - The highest level at which the aircraft package can fly (based on
the aircraft in the aircraft package with the least amount of altitude capabilities).

23. (+) Speed - The speed at which the aircraft package will fly (the speed of the
slowest aircraft in the aircraft package).

24. Ineffective-Reason - The reason the aircraft package was aborted of ineffective.

25. Orbit-Location - The air hex location that the aircraft should center its orbit
in.

26. (+) Detected - Boolean value indicating whether the aircraft package has been
detected by the enemy's early warning systems.

27. (+) Positiveld - Boolean value indicating that not only was the aircraft package
detected, but was also positively identified by the enemy.

28. (+) Delayed - Boolean value indicating that the aircraft package was delayed.

29. (+) Was-Cancelled - Boolean value indicating that the aircraft packages was
cancelled.

30. (+) Warhead - The type of warhead to be used by the aircraft package.

31. (+) PrimMsnLevel - The level at which the primary aircraft of the aircraft
package will delivery their weapons.

32. Hexes-Overflown - Linked list of air hex numbers the aircraft package flew
through.

33. AttritPerAirHex - Linked list of the aircraft lost per air hex.

- Air-Hex - The air hex number.

- Quantity - The number of aircraft lost in the air hex.

34. PrimAcSched - Linked list of the primary aircraft scheduled for the aircraft
package.

- Designation - The alphanumeric designation of the aircraft type.

- Quantity - The number of that type of aircraft scheduled.

35. Prim.AcUsed - Linked list of the primary aircraft actually used to perform the
aircraft mission.
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- Designation - The alphanumeric designation of the aircraft type.

- Quantity - The number of that type of aircraft used.

- TheAirbaseNo - The base identification the aircraft originated from.

36. Escort_-OrCapAcSched - Linked list of the escort and close air patrol (CAP)
aircraft scheduled for the aircraft package. Same attributes as Prim-AcSched.

37. EscortOrCapAcUsed - Linked list of the escort and CAP aircraft actually
used to perform the aircraft mission. Same attributes as PrimAcUsed.

38. Sead-AcSched - Linked list of the suppression of enemy air defense (SEAD)
aircraft scheduled for the aircraft package. Same attributes as PrimAcSched.

39. SeadAcUsed - Linked list of the SEAD aircraft actually used to perform the
aircraft mission. Same attributes as PrimAcUsed.

40. EcmAcSched - Linked list of the electronic countermeasure (EC) aircraft
scheduled for the aircraft package. Same attributes as PrimAcSched.

41. EcmAcUsed - Linked list of the EC aircraft actually used to perform the
aircraft mission. Same attributes as Prim-Ac-Used.

42. RefuelAcSched - Linked list of the refueling aircraft scheduled for the aircraft
package. Same attributes as Prim-AcSched.

43. Refuel-AcUsed - Linked list of the refueling aircraft actually used to perform
the aircraft mission. Same attributes as PrimAcUsed.

"* CHEMICAL WEAPON

1. Designation - The alphanumeric designator of the chemical weapon.

2. Force - The color designation of the chemical weapon.

3. Persistence - (persistence-time) The time the chemical weapon is effective after
detination.

4. Lethality - The lethality of the chemical weapon.

5. CEP - The circular error of probability of the chemical weapon.

"* CLOCK

1. Period - The session period.

2. Cycle - Determines whether the session period is day or night.

"* FORCES

1. Country - The country participating in the simulation.

2. Force - The force (red, blue, neutral) the country fights on.

"* GROUND COMPONENT

1. Designation - The alphanumeric designator of the ground component type.
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2. AmmoUsageRate - The amount of ammunition the ground componet type
uses on a daily basis.

3. PolUsageRate - The amount of petroleum, oil, and lubricants that the ground
component type uses per day.

4. HardwareUsage.Rate - (hw.usage.rate) The amount of hardware used by the
ground component type on a daily basis.

5. Target-Weight - (target-wgt) The weight of the ground component type.

6. Firepower-Weight - (firepower) The firepower the ground component type.

7. Length - The length of the ground component type.

8. Width - The width of the ground component type.

* GROUND HEX

1. Hex-Weather - (actual-wz) The actual weather in the ground hex.

2. Weather-Zone - (wz) The weather zone the ground hex is located in.

3. Force - The color designation of the ground hex.

4. Mission - (army-mission-type) The mission of the ground hex.

5. (*) In-Contact - Boolean value indicating whether the ground hex is in contact
with an opposing ground hex (adjacent hexes have opposing forces located in
them).

6. (*) In-Attrition - Boolean value indicating whether the ground hex's land units
are in attrition.

7. CPOut - (cpo) The combat power that the ground hex projects out towirds
its surrounding ground hexes.

8. CPIn - (cpi) The combat power that the ground hex has projected into it from
its surrounding ground hexes.

9. Attrition - Attrition rate of the ground hex.

10. SAI - The aggregated surface-to-air index for the units located in the ground
hex.

11. Intel-Index - Intelligence index of the ground hex.

12. Persistence - (persistence-time) The remaining time the ground hex will feel
effects of a nuclear or a chemical weapons attack.

13. EC - Electronic countermeasure of the ground hex.

14. Center-Hex - The air hex located directly over the ground hex.

15. Sides - Array of the six sides of the ground hex (N, NE, SE, S, SW, NW). Each
side has the following attributes.

- HexsideNo - (neighborid) The unique alphanumeric label that identifies
the common border between two ground hexes.
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- Feba - Boolean value indicating if side is part of the feba.

- River - The width of the river at the hex side.

16. Pie-Pieces - (pie.trafficability) Array of the six hex pie pieces that indicate the
trafficability of the pie piece. The trafficability is the difficulty of travel between
the center of the ground hex to the side.

17. Unit-List - Linked list of land unit identifications located in the ground hex.

18. Base-List - Linked list of airbase identifications located in the ground hex.

19. Depot-List - Linked list of depot identifications located in the ground hex.

"* HARDNESS

1. Target - (target-type) The alphanumeric identification of the target type.

2. PKValue - (hardness) The hardness of the target type.

"* LAND UNIT

1. LandUnitId - (unit-id) The unique alphanumeric identifier for the land unit.

2. (+) Corps-Id - The identifier of the corps the land unit belongs to.

3. (±) Parent-Unit - The identifier of the land unit's parent unit.

4. (±) Full-Designator - The full alphanumeric designator of the land unit.

5. (+) AbbrevDesignator - The abbreviated designator of the land unit.

6. (+) Country - The country the land units belongs to.

7. TypeOfUnit - (unit-type) The type of land unit.

8. Force - The color designation of the land unit.

9. Present_-Location - (location) The ground hex in which the land unit is located.

10. (*) Current-Mission - The current mission the unit is executing.

- Mission-Location - The location of the unit's current mission.

- Mission - The type of mission being performed. Values : (primary, over-
ride, supply, none).

11. MsnEffDay - The day in which the land unit becomes active.

12. Region - Region of the hex the land unit is located in.

13. (*)HexDir - The direction the land unit is headed.

14. (*) Move-Allowed - Array of the directions the land unit is allowed to move.

15. (*) In-Attrition - Boolean value indicating the land unit is in attrition with
enemy units.

16. Firepower - The firepower of the land unit.

17. Combatpower - (combat-power) The combat power of the land unit.

18. Attrition - The attrition rate of the land unit.
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19. Total-Pol - The total amount of petroleum, oil, and lubricants the land unit
has.

20. PolMaxCapacity - The maximum amount petroleum, oil and lubricants the
land unit can hold at one time.

21. (*) Pol-UsageRate - The amount of petroleum, oil, and lubricants the land unit
uses in a day.

22. TotalAmmo - The total amount of munitions the land unit has.

23. Ammo.l.MaxCapacity - The maximum amount of munition the land unit can
hold at one time.

24. (*) AmmoUsageRate - The amount of munition the land unit uses in a day.

25. Total-Hardware - The total amount of hardware the unit has.

26. HardwareMaxCapacity - The maximum amount of hardware the unit can hold
at one time.

27. (*) HardwareUsageRate - The amount of hardware the unit uses in a day.

28. (*) In-Contact - Boolean value indicating whether the unit is in contact with
enemy units.

29. Intel-index - Intelligence index of the land unit.

30. Intel-Filter - Intelligence filter of the land unit.

31. (*) WasIntelled - Boolean value indicating whether or not the land unit was
intelled.

32. Breakpt - (breakpoint) The maximum combatpower the level that a land unit
must sustain in order to engage in battle. When the combat power of the land
unit falls below this value, it automatically withdrawals from combat.

33. Grid-Time - If the land unit is moving the grid time is either the amount of time
a unit needs to cross a ground hex or the amount of time needed to overcome
an obstacle at a border. If the unit is stationary, it is the amount of time the
unit has acquired in the ground hex.

34. DayLastIntelled - The last day intelligence was performed on the land unit.

35. PrdLast.Intelled - The last period intelligence was performed on the land unit.

36. Loc.Last.Intelled - The ground hex on which the land unit last had any re-
conaissance performed on it.

37. DepotSpt - The identification of the unit that provides the land unit depot
support.

38. (*) UnderChemNucAtk - Boolean value indicating whether the land unit is
under a chemical or nuclear attack.

39. MoppPosture - Mopp posture of the land unit.

40. Troop-Quality - The experience, leadership, and fighting skill of the land unit.

41. Groundspeed - The top speed that the land unit can move across a ground hex.
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42. FuelTrucks - The number of fuel trucks the land unit possesses.

43. AmmoTrucks - The number of ammunition trucks the land unit possesses.

44. Water - The amount of water the land unit possesses.

45. Water-Percent - The percentage of water used by the land unit on a daily basis.

46. Water-Trucks - The number of water truck the land unit possesses.

47. Engineers - The number of engineers the land units possesses.

48. Eng-Vehicles - The number of engineering vehicles the land unit possesses.

49. Status - The status of the land unit.

50. Unit-Size - The size of the land unit.

51. (+) Vis-ToEnemy - Boolean field which describes whether the land unit will
appear on the computer of an opposing player.

52. Supported-Units - Linked list of the units the land unit supports.

- Unit-No - The identification of the land unit to be supported.

- Percent-Support - The amount of support that land unit recieves.

53. Missions - Linked list of the land units primary missions. See LAND UNIT
MISSION object class for its attributes.

54. Override-Missions - Linked list of the land units override missions. See LAND
UNIT MISSION object class for its attributes.

55. Components - Linked list of the land units ground components.

- Designation - The alphanumeric designation of the ground component
type.

- Quantity - The quantity the land unit has of that ground component type.

56. Weapons - Linked list of the land units weapons. These include both surface-
to-surface and surface-to-air weapon types.

- Designation - The alphanumeric designation of the weapon type.

- Weapons-Quantity - The quantity the land unit has of that weapon type.

- Launchers-Quantity - The quantity of launchers the unit has to support
the weapon type.

57. Radars - Linked list of the land units radars. See RADAR object class for its
attributes.

* LAND UNIT MISSION

1. OrderId - The land unit mission identifier.

2. TargetId - The unique identifier of the target.

3. Mission - (army-mission-type) The mission type.

4. (*) Mission-Location - The location of the target.

5. Day - The day on which the mission is to be executed.
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6. Period - The period on which the mission is to be executed.

"* NUCLEAR WEAPON

1. Designation - The alphanumeric designation of the nuclear weapon.

2. Yield - The yield of the nuclear weapon.

3. Force - The color designation of the nuclear weapon.

4. CEP - The circular probability of the nuclear weapon.

5. Persistence - (persistence-time) The amount of time the effects of the nuclear
weapon will be felt after detenation.

"* OBSTACLE

1. ObstacleId - The unique identifier of the obstacle.

2. HexsideNo - The unique identifier of the side the obstacle is located.

3. Obstacle - The type of obstacle.

4. ObsDiff - (difficulty) The difficulty of the obstacle to overcome.

5. Vis-To.Enemy - The knowledge or visibility the enemy has of the obstacle.

"* PIPELINES

1. Pipelineld - The unique identifier of the pipeline.

2. Hex-No - The ground hex the pipeline piece is located.

3. Pie-Piece - Indicates which of the six pie pieces the pipeline piece is located.

4. Product - The product carried by the pipeline piece.

5. Name - The name of the pipeline.

6. Flow - Boolean value indicating whether the pipeline piece is flowing or not.

"* WEAPONS LOAD

1. Weapons_.Load-Id - (loadid) The weapons load identifier.

2. Designation - The alphanumeric designation of the weapon type.

3. Quanitity - The quantity of that weapon type that comprise the weapons load.

"* RADAR

1. Type-Radar - (radar.type) The type of radar used with surface-to-air missile
systems.

2. Quality - The quality of the radar system.

3. Quantity - The quantity the land nnit has of that radar type.

"* RAILROAD
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1. RailroadId - The unique identifier of the railroad.

2. Hex-No - The ground hex the railroad piece is located.

3. Pie-Piece - Indicates which of the six pie pieces the railroad piece is located.

4. Name - The name of the railroad.

5. Flow - Boolean value indicating whether the railroad piece is flowing or not.

"* ROAD

1. RoadId - The unique identifier of the road.

2. Hex-No - The ground hex the road piece is located.

3. Pie-Piece - Indicates which of the six pie pieces the road piece is located.

4. Name - The name of the road.

5. Size - (road-size) The width of the road piece.

6. Flow - Boolean value indicating whether the road piece is flowing or not.

"* RUNWAY

1. Baseld - Base identification of location of runway.

2. Runway - The unique identifier of the runway.

3. Condition - (difficulty) The condition of the runway.

4. Current-Length - The current length of the runway.

5. Max-Length - The maximum length of the runway.

"* SATELLITE

1. SatelliteId - The unique identifier of teh satellite.

2. Designation - The alphanumeric designation of the satellite.

3. Force - The color designation of the satellite.

4. Location - The air hex identification the satellite is located in.

5. Sat-Type - The satellite type.

6. Status - The status of the satellite.

7. Speed - The speed of the satellite.

8. Direction - The current direction in which the satellite is moving.

9. Orbit - The satellite orbit type.

10. Sat.-Delay - (delay) The time delay required by the satellite from the time of its
launching to the time it is operational in orbit.

* SUPPLY TRAIN

1. All attributes plus the following attributes.
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2. SupplyTrainld - The identifier which links it with the land unit it belongs to.

3. ResupplyUnitld - The land unit idendifier which resupplies the supply train.

4. STMissions - Linked list of the supply trains missions. See SUPPLY TRAIN
MISSION object class for its attributes.

5. Tot-Cap - Total amount of supplies the supply train can carry at one time.

6. In-Use - Boolean value indicating whether the supply train is currently being
used or not.

7. TypeOf-ST - (supply.type) The type of supply train.

8. Trans-Mode - The supply train' type of transportation.

9. TotalPol - The total amount of petroleum, oil, and lubricants the supply train
currently carries.

10. TotalAmmo - The total amount of ammunitions the supply train currently
carries.

11. Total-Haxdware - The total amount of hardware the supply train currently car-
ries.

12. Total-Spares - The total amount of spares the supply train currently carries.

* SUPPLY TRAIN MISSION

1. Orderld - The unique identifier of the order.

2. TypeOfSupply - (designation) The type of supplies to deliver.

3. Delivery-Quantity - The amount of that supply type to deliver.

* SURFACE-TO-SURFACE MISSILE

1. Designation - The alphanumeric designation of the surface-to-surface missile.

2. Force - The color designation of the surface-to-surface missile.

3. Warhead - (class) The type of warhead the surface-to-surface missile has.

4. LeathalityRadius - (lethal-area) The lethal blast radius of the surface-to-surface
missile.

5. CEP - The circular error of probability of the surface-to-surface missile.

6. PKJHard-Point-Type - (pk-hard) The probability of destroying a hardened tar-
get with a direct hit.

7. PKlvMedPoint-Type - (pk.raed) The probability of destroying a medium-hardened
target with a direct hit.

8. PKSoft_-Point-Type - (pk-soft) The probability of destroying an unhardened
target with a direct hit.

9. Min-Range - The mimimum effective range that the surface-to-surface missile
can be used to hit a target.
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10. Max-Range - The maximum range a surface-to-surface missile can fly.

11. Launcher-Rounds - (rnds-per-launcher) The number of missile rounds that are
normally loaded on a single launching platform.

12. Reload-Time - The minimum time necessary to reload a missle launcher after a
missile has been fired.

* SURFACE-TO-AIR MISSILES

1. Designation - The alphanumeric designation of the surface-to-air missile.

2. Force - The color designation of the surface-to-air missile.

3. Warhead - (class) The type of warhead the surface-to-air missile has.

4. Slow-High - Air Defense Artillery value for a slow moving attack aircraft with
high probability.

5. Slow-Low - Air Defense Artillery value for a slow moving attack aircraft with
low probability.

6. Fast-High - Air Defense Artillery value for a fast moving attack aircraft with
high probability.

7. Fast-Low - Air Defense Artillery value for a fast moving attack aircraft with low
probability.

8. SSPK - Single shot probability of kill.

9. MissRadarRange - Array of the radar's range and the missile's range for each
hex level.

- Missile-Range - The range of the surface-to-air missile.

- Radar-Range - The range of the radar used by the surface-to-air missile.

10. Launcher-Rounds - (rnds-perlauncher) The number of missile rounds that are
normally loaded on a single launching platform.

11. Reload-Time - The minimum time necessary to reload a missle launcher after a
missile has been fired.

12. Weather-Min - (weather-minimum) The minimum weather in which the surface-
to-air missile will be effective.

* WEATHER

1. Good-Percent - (forecast-good) The probability of having good weather, ex-
pressed as a percentage.

2. Fair-Percent - (forecast-fair) The probability of having fair weather, expressed
as a percentage.

3. Weather - (actual-wx) The actual calculated weather.
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Appendix B. Object Classes and Their Operations

This appendix lists all of the operations that are required of each object classes
(alphabetic order). The operations shown indicate what is seen in the specfications of
each package and do not show operations (functions and subprocedures) that compose the
specfication operations.

* AIR HEX

1. GETAIRGRID - Reads air hex information form the flat file.

2. LOADAIRHEXWEATHER - Loads the weather into each of the air hexes.

3. ADDACPKGTOHEX - Adds an aircraft package identification number to the
hex.

4. DELETEACKGFROM_-HEX - Deletes an aircraft package identification num-
ber from a hex.

5. ADD SATELLITETOHEX - Adds a satellite identification number to a air
hex.

6. DELETESATELLITEFROM_-IEX - Deletes a satellite identification number
from a air hex.

7. Functions that retreive air hex attributes. For example, WEATHER-OF, which
will return the weather of the specified air hex number.

8. Update procedures. For example, UPDATE-ATTRITION, which will update
the attrition of the specified given a air hex number tW the new specified attrition
value.

9. SETYFIRSTBLUE-ACPKGINHEX - Sets an internal pointer to the first blue
aircraft package in a air hex.

10. SETFIRSTREDACPKGINHEX - Sets an internal pointer to the first red
aircraft package in a air hex.

11. NEXT..ACPKGINHEX - Returns the next blue or red aircraft package iden-
tification number (depending on what set procedure was last invoked) located
in the air hex. The boolean variable AnotherAcpkg indicate- whether there is
another aircraft package or not.

12. SETFIRST.SATELLITEINA_HEX - Sets an internal pointer to the first satellite
in a air hex.

13. NEXTSATELLITEINJIEX - Returns the next satellite identification number
located in the air hex.

14. WRITEAIRGRID - Regenerates fiat file with modified data.

* AIR SIMULATION

1. INITIALIZE-AIR - Initializes all the objects related to the air battle.
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2. SET-UP - Provides the necessary set-up procedures before each simulation time
slice.

3. PERFORM-MISSIONS - Determines current missions, formulates possible air-
craft packages and executes the mission.

4. WRITE-DATA - Regenerates all the fiat files related to the air battle.

* AIRCRAFT

1. GET-AIRCRAFT - Retrieves all the aircraft types from flat file.

2. Functions for each aircraft attribute that will return the desired attribute of the
specified aircraft type.

3. PCLOF - Returns the preferred weapons load number if the aircraft is flying
a conventional mission.

4. PBLOF - Returns the preferred weapons load number if the aircraft is flying a
biological mission.

5. PNLOF - Returns the preferred weapons load number if the aircraft is flying
a nunclear mission.

* AIRCRAFT PACKAGE

1. GET-AIRCRAFTPACKAGES - Reads the aircraft packages from the fiat file.

2. SETFIRSTAIRCRAFTPACKAGE - Sets an internal pointer to the first air-
craft package.

3. NEXTAIRCRAFT-PACKAGE - Returns the next aircraft package identifica-
tion number. The boolean variable Another-AircraftPackage indicates whether
there is another aircraft package or not.

4. FORMAACPKG - Performs the necessary operations to form a aircraft pack-
age.

5. DELETEAACPKG - Deletes a aircraft package from the list.

6. SETYFIRSTSCHED AC - This operation will set a pointer to the first scheduled
aircraft of the designated aircraft role (primary, escort, SEAD, ECM, refuel) of
a aircraft package.

7. NEXTSCHEDAC - Returns the next acheduled aircraft designation and quan-
tity. Will return a boolean value stating whether there are more scheduled
aircraft.

8. SETYFIRSTMISSIONAC - Sets a pointer to the first mission aircraft of a
designated aircraft package. The aircraft role indicates whether the pointer will
be set to the primary, escort, sead, ec, or refueling aircraft.

9. NEXTMISSIONAC - Returns the next aircraft type, quantity, and base from
which the aircraft originated.
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10. ADDMISSION-AC - Adds an aircraft type, quantity, and originating base to
either the primary, escort, sead, ec, or refueling aircraft of a designated aircraft
package.

11. CLEAR-ALLMISSIONAC - Removes all the mission aircraft of a designated
aircraft package.

12. SETFIRSTHEXOVERFLOWN - Sets a pointer to the first hex the designated
aircraft package flew throung during its mission.

13. NEXT.HEXOVERFLOWN - Returns the next hex the aircraft packge flew
through. A boolean value indicates the last of the hexes the aircraft package
traversed.

14. ADD-OVERFLOWN-HEX - Adds a hex the the list of hexes a aircraft package
traversed.

15. SETFIRSTATTRITEDAIRHEX - Sets a pointer to the first hex the aircraft
package lost aircraft in combat.

16. NEXTATTRITEDAIRHEX - Returns the type of aircraft and quantity lost
along with the location (hex number) where the loses occurred.

17. ADDATTRITEDAIRHEX - Adds a aircraft type, quantity lost and the loca-
tion of aircraft lost by an aircraft package.

18. Functions to retrieve each aircraft package attribute and procedures to update
each aircraft package attribute.

19. WRITEAIRCRAFTYPACKAGES - Regenerates the aircraft package flat files.

* BASE (DEPOT)

1. GET-BASES - Reads base information from flat files.

2. GET-DEPOTS - Reads depot information from flat files.

3. SETYFIRSTBASE - Sets a pointer to the first base.

4. NEXT-BASE - Returns the base identification number as long as there is an-
other base, otherwise a boolean variable is set to false to indicate that the last
base was visited.

5. SETYFIRST.DEPOT - Sets a pointer to the first depot.

6. NEXT-DEPOT - Returns the depot identification number as long as there is
another depot, otherwise a boolean vairable is set to false to indicate that the
last depot was visited.

7. INCREASEYPOLSOFT-OFBASE - Increases the fuel in soft storage of a des-
ignated base or depot.

8. DECREASEPOLSOFTOF.BASE - Decreases the fuel in soft storage of a
designated base or depot.

9. INCREASE-POL-HARD -OF-BASE - Increases the fuel in hard storage of a
designated base or depot.
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10. DECREASEPOL-HARDOFABASE - Decreases the fuel in hard storage of a
designated base or depot.

11. INCREASESPARESOFBASE - Increases the amount of spares of a desig-
nated base or depot.

12. DECREASE-SPARESOFBASE - Decreases the amount of spares of a desig-
nated base or depot.

13. INCREASEBASEAVAILAC - Increases the amount of available aircraft at a
base or depot by the designated aircraft type and quantity.

14. DECREASEBASEAVAILAC - Decreases the amount of available aircraft at
a base or depot by the designated aircraft type and quantity.

15. INCREASEBASE-MAINTAC - Increases the amount of maintenance aircraft
at a base or depot by the designated aircraft type and quantity.

16. INCREASEBASEWEAPONS - Increases the amount of weapons of a base a
depot by the designated weapon type and quantity.

17. DECREASE-BASEWEAPONS - Decreases the amount of weapons of a base
a depot by the designated weapon type and quantity.

18. SETFIRSTAVAIL-AC - Sets a pointer to the first aircraft available of a des-
ignated base or depot.

19. NEXTAVAILAC - Returns the next available aircraft type and quantity at
the base or depot. A boolean value indicates when the last available aircraft
was visited.

20. QUANTOFAVAILAC-TYPE - Returns the quantity available of a particular
aircraft type at a designated base or depot.

21. SETFIRSTLMAINTAC - Sets a pointer to the first aircraft in maintenance at
a designated base or depot

22. NEXTMAINT-AC - Returns the next maintenance aircraft type, quantity and
time remaining in maintenance. A boolean value indicates when the last main-
tenance aircraft was visited.

23. QUANTOFMAINTAC -TYPE - Returns the quantity of maintenance aircraft
of a particular aircraft type at a designated base or depot.

24. SETFIRSTWEAPON - Sets a pointer to the first weapon of a designated base
or depot.

25. NEXT-WEAPON - Returns the next weapon and quantity located at the base
or depot. A boolean value indicates that all the weapons have been visited.

26. QUANTLOF.WEAPON_-TYPE - Returns the quantity of a particular weapon
type a base or depot possesses.

27. SETSFIRSTALTBASE - Sets a pointer to the first alternate base of a desig-
nated base or depot.

28. NEXTALTBASE - Returns the unique identification of the next alternate
base. A boolean value indicates there are not any more alternate bases.
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29. DETERMINEREGIONAIRCRAFT - Creates a list of all the available aircraft
located in a particular region.

30. SETFIRSTREGIONAIRCRAFT - Sets a pointer to the first available aircraft
in the region.

31. NEXTREGIONAIRCRAFT - Returns the next type of aircraft, quantity, and
base identification the aircraft is located. A boolean value indicates that all the
region aircraft have been visited.

32. Functions to retrieve base attributes.

33. Procedures to update base attributes.

34. WRITE-BASESDEPOTS - Regenerates the base and depot fiat files.

"* CLOCK

1. GET-CLOCK - Reads the current day, current period and the number of time
slices the simulation will execute.

2. GET-CYCLES - Reads the day and nighL cycles.

3. CURRENT-CYCLE - Returns whether the given period is day or night.

4. WRITE-CLOCK - Regenerates the clock flat file.

"* FORCES

1. GET-COUNTRIES - Reads the list countries and the force (red, blue) they
fight with.

2. GETFORCE-OFCOUNTRY - Returns the force of a given country.

"* GROUND COMPONENT

1. GET-GROUNDCOMPONENTS - Reads all the ground components available
from the flat files.

2. Functions for each attribute that will return the attribute for a specified ground
component type.

"* GROUND HEX

1. GET-GROUNDGRID - Reads the ground grid information from the fiat files.

2. APPLYYFS - Applies field artillery, aviation, and air defense fire support with
the combat power of the units being provided the support.

3. APPLYCP - Sets up the numbers required for calculating attrition. It also
takes all the firepower in a hex and applies it equally to all adjacent hexes
which contain opposing forces.

4. ATTRIT - Performs attrition on every unit in combat.

5. LOAD-GROUNDHEXWEATHER - Loads the weather of the specified weather
period and day into each of the hexes.
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6. ADD.JUNITTOAHEX - Adds a land units unique identification to the desig-

nated ground hex.

7. DELETEUNITYFROMJHEX - Deletes a land units identification from the des-
ignated ground hex.

8. ADDBASE-TOHEX - Adds a bases unique identification to the designated
ground hex.

9. ADDIDEPOTTOJHEX - Adds a depots unique identification to the designated
ground hex.

10. SETFIRST-UNITIN-HEX - Sets a pointer to the first laud unit located in the
designated ground hex.

11. NEXT-UNIT IN-HEX - Returns the next land unit indentification located ihi
the ground hex. A boolean value indicates that there are not any more land
units in the ground hex.

12. SETYFIRSTBASEJNHEX - Sets a pointer to the first base located in the
designated ground hex.

13. NEXTBASEJINHEX - Returns the next base identification located in the
ground hex. A boolean value indicates that there are not any more bases in the
ground hex.

14. SETFIRSTDEPOTINHEX - Sets a pointer to the first depot located in the
designated ground hex.

15. NEXT-DEPOTINHEX - Returns the next depot identification located in the
ground hex. A boolean balue indicates that there are not any more depots in
the groung hex.

16. Functions to retrieve attributes of a specified ground hex.

17. Procedures to update attributes of a specified ground hex.

18. WRITE-GROUND_-GRID - Regenerates the ground grid flat files.

"* HARDNESS

1. GET-HARDNESS - Reads the hardnesses of each of the entites that can be
targeted.

2. HARDNESS-OF - Returns the hardness of the designated target type.

"* LAND SIMULATION

1. INITIALIZE-LAND - Initializes all the objects related to the land battle.

2. SET-UP - Provides the necessary set up procedures before each simulation time
slice.

3. PROVIDE-LOGISTICSSUPPORT - Provides the logistics support of supply
trains and mini depots.

4. MOVEMENT - Controls the overall movement of units.
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5. ATTRITION - Determines units that are in combat and applies attrition rat 'ýs
to the units.

6. INTELLIGENCE - Controls the land unit intelligence index reduction and itel-
ligence operations.

7. WRITE-DATA - Regenerates all the flat files related to the land battle.

e LAND UNIT

1. GETLAND.UNITS - Reads all the land unit information form the flat file.

2. SETFIRST.LAND-UNIT - Sets a pointer to the first land unit.

3. NEXT.LANDUNIT - Returns the next land units unique identification number.
A boolean value indicates when all the land units have been visited.

4. DELETE.ALAND-UNIT - Deletes a specified land unit from the simulation.

5. MOVEJINGRID - The procedure will move all land units as necessary. As long
as a unit is performing a movement or attack mission, it is not in contact with
enemy forces, and it has enough fuel, the uint will move at its prescribed rate.

6. DETERMINEYFIREPOWERS - Calculates the firepowers of all land units.

7. DETERMINEAMMOJHWYPOLUSAGE.RATES - Caluculates the ammuni-
tion, harwdare and fuel usage rates for all land units.

8. RESUPPLY-UNITS - Provides the automatic resupply of ammunitions, hard-
ware, and fuel from mini depots to front line fighting units.

9. REDUCEINTEL - Reduces the intel index of all land units by the prescribed
amount.

10. INCREASE-LANDUNITS_-COMPONENTS - Increases the amount of compo-
nents a land unit has by the designated component type and quantity.

11. DECREAS ELANDUNITS_-COMPONENTS - Decreases the amount of com-
ponents a land unit has by the designated component type and quantity.

12. INCREASELAND-UNITS-WEAPONS - Increases the amount of weapons a
land unit has by the designated weapon type and quantity.

13. DECREASE-LAND-UNITS.-WEAPONS - Decreases the amount of weapons a
land unit has by the designated weapon type and quantity.

14. INCREASE-LANDUNITSLAUNCHERS - Increases the amount of launchers
a land unit has by the designated launcher type and quantity.

15. DECREASE.LAND-UNITS-LAUNCHERS - Decreases the amount of launchers
a land unit has by the designated launcher type and quantity.

16. INCREASE-AMMO..OF -UNIT - Increases the amount of ammunitions a land
unit has by the designated quantity.

17. DECREASEAMMO-OF.UNIT - Decreases the amount of ammunitions a land
unit has by the designated quantity.
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18. INCREASEAHARDWAREOFUNIT - Increases the amount of hardware a land
unit has by the designated quantity.

19. DECREASEAHARDWAREOF-UNIT - Decreases the amount of hardware a
land unit has by the designated quantity.

20. INCREASEPOLOFUNIT - Increases the amount of fuel a land unit has by
the designated quantity.

21. DECREASEPOL-OFUNIT - Decreases the amount of fuel a land unit has by
the designated quantity.

22. SETYFIRSTSUPPORTED-UNIT - Sets a pointer to the first supported unit of
the designated land unit.

23. NEXTSUPPORTEDUNIT - Returns the next land unit identification number
that is supported and the amount of support that unit will receive. A boolean
value indicates there are no more supported units.

24. SETFIRSTLCOMPONENT - Sets a pointer to the first component of the des-
ignated land unit.

25. NEXT-COMPONENT - Returns the next component type and quantity. A
boolean value indicates the last component was visited.

26. SETFIRSTWEAPON - Sets a pointer to the first weapon of the designated
land unit.

27. NEXT-WEAPON - Returns the next weapon type, the quantity of weapons,
and the quanitity of launchers the unit has to support that weapon type. A
boolean value indicates that the last weapon was visited.

28. SETFIRSTLRADAR - Sets a pointer to the first radar of the designated land
unit.

29. NEXT-RADAR - Returns the next radar type, quality, and quantity. A boolean
value indicates that the last radar was visited.

30. SETFIRSTLMISSION - Sets a pointer to the first mission of the designated
land unit.

31. NEXT-MISSION - Returns the next mission number. A boolean value indicates
that the last mission was visited.

32. SET -FIRST.OVERRIDE-MISSION - Sets a pointer to the first override mission
of the designated land unit.

33. NEXTOVERRIDEMISSION - Returns the next override mission number. A
boolean value indicates that the last override mission was visited.

34. Functions to retrieve attributes of a specified land unit.

35. Procedures to update attributes of a specified land unit.

36. WRITE-LANDUNITS - Regenerates the fiat files containing the land units
information.

* OBSTACLE
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1. GET-OBSTACLES - Reads all the obstacle information from the fiat files.

2. SETFIRSTOBSTACLE - Sets a pointer to the first obstacle of the designated
hexside number.

3. NEXT-OBSTACLE - Returns the next obstacle number of the hexside. A
boolean value indicates that there are not any more obstacles at the hexside.

4. MAXOBSTACLEDIFFOF - Returns the maximum difficulties of all the ob-
stacles of the disignated hexside number.

5. VALUEOFOBSDIFF - Returns the specific value number of an obstacle type.

6. Functions to retrieve attributes of a specified obstacle.

7. Procedures to update attributes of a specified obstacle.

8. WRITE-OBSTACLES - Regenerates the fiat files containing obstacle informa-
tion.

* PIPELINE

1. GET-PIPELINES - Reads all the pipeline information from the fiat files.

2. SETFIRSTPIPELINESEGMENT-OFYPIEPIECE - Sets a pointer to the
first pipeline segment located in the designated hex number and pie piece.

3. SETFIRSTSEGMENTOFPIPELINE - Returns the next pipeline segment in
a hex pie piece or the next pipeline segment of a larger pipeline.

4. NEXTYPIPELINESEGMENT - Returns the next pipeline segment number in
a hex pie piece or the next pipeline segment of a larger pipeline. A boolean
value is set when there are not any more pipeline segments.

5. Functions to retrieve attributes of a specified pipeline segment.

6. Procedures to update attributes of a specified pipeline segment.

7. WRITE-PIPELINES - Regenerates the fiat files containing all pipeline infor-
mation.

* RAILROAD

1. GET-RAILROADS - Reads all the railroad information from the fiat files.

2. SETFIRSTRAILROADSEGEMNTOFPIEPIECE - Sets a pointer to the
first railroad segment located in the designated hex number and pie piece.

3. SET-FIRSTSEGMENTOFRAILROAD - Sets a pointer to the first railroad
segment of a larger railroad.

4. NEXT-RAILROADSEGMENT - Returns the next railroad segment number
in a hex pie piece or the next railroad segment of a larger railroad. A boolean
value is set when all the railroad segments have been visited.

5. Functions to retrieve attributes of a specified railroad segment.

6. Procedures to update attributes of a specified railroad segment.
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7. WRITE-RAILROADS - Regenerates the flat files containing all railroad infor-
mation.

* ROAD

1. GET-ROADS - Reads all the road information from the flat files.

2. SETYFIRSTMROADRSEGMENTOFYPIEYPIECE - Sets a pointer to the first
road segment located in the designated hex number and pie piece.

3. SET-FIRSTSEGMENTOFROAD - Sets a pointer to the first road segment
of a larger road.

4. NEXT-ROADSEGMENT - Returns the next road segment number in a hex
pie piece or the next railroad segment of a larger railroad. A boolean value is
set when all the road segments have been visited.

5. Functions to retrieve attributes of a specified road segment.

6. Procedures to update attributes of a specified road segment.

7. WRITE-ROADS - Regenerate the flat files containing all road information.

"* RUNWAY

1. GET-RUNWAYS - Reads the simulation runways from the flat file.

2. SET-FIRST_-BASERUNWAY - Sets a pointer to the first runway of the speci-
fied base.

3. NEXTBASERUNWAY - Returns the next runway located at the base. A
boolean value indicates whether there is another runway at the base or not.

4. BASE.MAX-RUNWAYLENGTHOF - Returns the longest runway length of
the runways at a particular base.

5. Functions and procedures to obtain and update each attribute of a particular
runway number.

6. WRITE-RUNWAYS - Writes runway information out to fiat file.

"* SATELLITE

1. GET-SATELLITES - Reads all the satellite information from the fiat files.

2. SETFIRSTSATELLITE - Sets a pointer to the first satellite in the simulation.

3. NEXT-SATELLITE - Returns the next satellite number. A boolean value is
set when all the satellites have been visited.

4. Functions and procedures to obtain and update each attribute of a given satellite
number.

5. WRTIE.SATELLITES - Regenerates the fiat files containing all the satellite
information.

"* SUPPLY TRAIN
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1. GETSUPPLY-TRAINS - Reads all the supply train information from the fiat
files.

2. SETYFIRSTLSUPPLYTRAIN - Sets a pointer to the first supply train in the
simulation.

3. NEXTLSUPPLY-TRAIN - Returns the next supply train number. A boolean
value is set when all the supply trains have been visited.

4. DELETE-SUPPLY-TRAIN - Deletes a supply train from the simulation.

5. DETERMINEYFULL-LOAD-OFST - Returns the total amount of ammuni-
tions, fuel, hardware and spares the supply train needs to fulfill its missions.

6. INCREASE.AMMO - Increases the amount of ammunitions of the supply train
by the designated quantity.

7. DECREASEAMMO - Decreases the amount of ammunitions of the supply train
by the designated quantity.

8. INCREASEPOL - Increases the amount of fuel of the supply train by the
designated quantity.

9. DECREASEPOL - Decreases the amount of fuel of the supply train by the
designated quantity.

10. INCREASEHW - Increases the amount of hardware of the supply train by the
designated quantity.

11. DECREASEHW - Decreases the amount of hardware of the supply train by
the designated quantity.

12. INCREASE-SPARES - Increases the amount of spares of the supply train by
the designated quantity.

13. DECREAgJITSPARES - Decreases the amount of spares of the supply train by
the designated quantity.

14. Functions and procedures to obtain and update each attribute of a given suppy
train number.

15. WRITESUPPLYTRAINS - Regenerates the flat files containing all the supply
trains information.

e WEAPONS

1. GET-SAM - Reads all the surface-to-air missile information from the flat files.

2. GETSSM - Reads all the surface-to-surface missile information from the flat
files.

3. GETAAW - Reads all the air-to-air weapon information from the flat files.

4. GET-AGW - Reads all the air-to-ground weapon information from the flat files.

5. GET-CHEM - Reads all the chemical weapon information from the flat files.

6. GETLNUC - Reads all the nuclear weapon information form the flat files.
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7. Functions for each attribute and and weapon type that will return the attribute
value of the requested weapon designation.

* WEAPONS LOAD

1. GET.WEAPONSLOAD - Reads the weapons loads from the flat file.

2. SETYFIRSTWEAPONOFLOAD - Will set a pointer to the first weapon of
the given load identification number.

3. NEXT-WEAPON.-OF-LOAD - Returns the next weapon type and quantity that
compose a weapons load. A boolean value is used to determine if there are any
more weapons for the load.

* WEATHER

1. GET-WEATHER - Reads in all the weather information from the flat files.

2. CALC.WEATHERVAL - Returns the value associated with a particular weather
type (good, fair, poor).
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Appendix C. Visibility of Each Object Class

This appendix lists all of the object classes. Under each object class are two lists.
One indicates what the object class's package specification "sees" and the other is what
the object class's package body "sees". This listing corresponds to the "with" clauses of
the object class's specification and body. The TEXTJO package is used by every object
class and is not shown. If the specification of a package has visibility to another object, so
does the package body.

"* AIR HEX 16. WEAPONS-LOAD

Specification * AIRCRAFT

1. FORCES Specification

2. WEATHER 1. FORCES

3. HEX 2. HARDNESS

Body 3. WEATHER

1. SIMULATION_-CONSTANTS Body
2. DOUBLYLINKEDIIST 1. DOUBLYLINKEDLIST

"* AIR SIMULATION 2. COMPOSITELINKED-LIST

Body * AIRCRAFT PACKAGES

1. AIR-HEX Specification

2. AIRCRAFT 1. AIRCRAFT

3. AIRCRAFT-PACKAGES 2. FORCES

4. ALGORITHMS 3. HEX

5. BASE-COMPONENTS 4. WEAPONS

6. BASES

7. CLOCK Body

8. DOUBLYLINKED_-LIST 1. BASES

9. GROUND-HEX 2. COMPOSITELINKEDLIST

10. HARDNESS 3. DOUBLYLINKEDLIST

11. HEX 4. GROUND-HEX

12. HISTORY 5. HARDNESS

13. RUNWAYS 6. RUNWAYS

14. SATELLITES 7. SIMULATION_-CONSTANTS

15. WEAPONS 8. WEAPONS-LOAD
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9. WEATHER 1. FORCES

10. WEAPONS 2. HEX

* ALGORITHMS 3. LAND-UNITS

NONE 4. WEATHER

a BASE-COMPONENTS Body

Body 1. DOUBLYLINKEDLIST

1. DOUBLYLINKEDLIST 2. CLOCK

3. HISTORY
* BASES (DEPOT) 4. SIMULATION -CONSTANTS

Specification

"* HARDNESS
1. FORCES

2. WEATHER 
Body

1. DOUBLY-LINKED-LIST
Body

"* HEX
1. DOUBLYLINKEDLIST

2. COMPOSITELINKEDLIST Body

e CLOCK 1. SIMULATION-CONSTANTS

Body 9 HISTORY

1. SIMULATIONCONSTANTS Specification

1. AIRCRAFT-PACKAGES
* COMPOSITELINKEDLIST

NONE Body

* DOUBLYLINKEDLIST 1. AIRCRAFT

NONE 2. CLOCK

e FORCES 3. FORCES

Body 4. LAND-UNITS

5. SUPPLY-TRAINS
1. DOUBLYLINKEDLIST

"* LAND SIMULATION
e GROUND COMPONENTS

Body
Body

1. ALOGRITHMS
1. DOUBLYLINKEDLIST

2. BASES

s GROUND HEX 3. CLOCK

Specification 4. FORCES
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5. GROUND-COMPONENTS 1. HEX

6. GROUND-HEX Body

7. HEX

8. HISTORY 1. DOUBLY-LINKED-LIST

9. LAND-UNITS e ROADS

10. OBSTACLES Specification

11. PIPELINES

12. RAILROADS 1. HEX

13. ROADS Body

14. SIMULATION-CONSTANTS 1. DOUBLY-LNKED-IST

15. SUPPLY-TRAINS
a RUNWAYS

"* LAND UNIT Body
Specification

1. DOUBLY.LINKEDLIST
1. FORCES

2. HEX e SABER

Body Specification

1. COMPOSITELINKEDLIST 1. TBD

2. DOUBLYLINKEDLIST Body

3. GROUND-COMPONENTS

4. SIMULATION_-CONSTANTS 1. TBD

"* OBSTACLES * SATELLITES

Body Specification

1. DOUBLY-LINKED-LIST 1. FORCES

2. SIMULATION-CONSTANTS 2. HEX

"* PIPELINES Body

Specification 1. DOUBLY-LINKED-LIST

1. HEX * SIMULATION-CONSTANTS

Body NONE

1. DOUBLY-LINKED-LIST * SUPPLY TRAINS

"* RAILROADS Body

Specification 1. DOUBLY-LINKEDLIST
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2. COMPOSITELINKEDLIST 1. DOUBLY-LINKED-LIST

* UNIFORM-PACKAGE s WEAPONS LOAD

NONE Body
* WEAPONS 1. DOUBLY-LINKED LIST

Specification
s WEATHER

1. FORCES

2. HEX Body

3. WEATHER 1. SIMULATION-CONSTANTS

Body 2. UNIFORM-PACKAGE
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